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FOREWORD

This report describes work accomplished in the program "Quasi %

Area Rule for Yeat Addition in Transonic and Supersonic Flight Regimes" 3

conducted under USAF MIPR APO-71-007. The work was accomplished :

during the period 1 Oct 1270 through 31 Aug 1971 at the Naval Post- e

graduate School, Monterey, California, under the direction of Dr. Allen §

E. Fuhs., The report was submitted on 1 Nov 1971. {

The program was sponsored by the Air Force Aero Propulsion Labora- ;
tory, Wright-Patterson Air Force Base, Ohio under Project 3066, Tur-

bine Engine Propulsion, Task 306603, Advanced Component Research. %
Dr. Kervyn D, Mach, AFAPL/TBC, Turbine Engine Components Branch, :
was the project engineer.

Publication of this report does not constitute Air Force ap-
proval of the report's findings or conclusions. It is published
only for the exchange and stimulation of ideas.

éNEST C. SIMPSON :
Director, Turbine Engine Division
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ABSTRACT

Body shapes, including axisymmetric and three dimensional, have been
developed to minimize wave drag. The von Karman ogive and the area rule are é
examples, Similar work has not been accomplished for optimum shapes with :
propulsion. Propulsion can be divided into two categories--those devices with
internal heat addition and those with external burning. For internal heat
addition an analyticel mecdel is formulated which introduces the propulsive disc.

Attention is shifted to external burning, which is examined for one dimensional

BT O

and two dimensional linearized flow. Heat fronts and combustion fans are

discussed as examples. Forces on a heat source in a uniform stream and

PR IS )

ad/~cent to bodies are derived, Several possible applications are examined

B Rt

including base pressure augmentation by external burning, spin recovery using

external burning, and transonic boattail drag alleviation, Previous work on

base pressure augmentation has used a two dimensional planar mocdel, A two

A A 4L

dimensional axisymmetric mocdel is examined.

Ao Y P B M

PO IR YRS P3PPI PINTY

]
h“:n’n [T POTRLN TR CP TR TRY WAy TV SN S P R T



TABLE OF CONTENTS

INTRODOCTION. . . . . . . . & : = = - . s . s

PROPULSION WITH INTERNAL HEAT ADDITION. . . . . . .
Introduction, « « ¢« ¢ ¢ ¢ ¢ v o ¢ ¢ 4 ¢ s 4 0.
Exhaust Variation with Mach Number. . . . . . . o«
Model for Propulsion with Internal Heat Addition,

EXTERNAL BURNING; BASIC BQUATIONS AND SOLUTIONS . .

Cne~Dimensioral Heat Addition . . o ¢ o « » ¢ o &«

»

Linearized Equations for Combined Mass and Heat Addition,

Volume Heat Addition. « « ¢« ¢« ¢ o ¢« ¢ ¢ ¢ o o o &
Heat Addition at a Flane; A Heat Front. . . . . .
Heat Addition and Vorticity « « « ¢ ¢ o ¢ o ¢ o ©
Mass Balance with Heat Addition . « ¢ ¢ ¢« ¢« « . &
EXTERNAL BURNING; THRUST MINUS DRAG « « « « & o~ .
Drag--Subsonic and Supersonic . « « ¢« ¢« ¢« ¢« ¢ . .
Relation Between Flux of Entr.py and Drag . . . «
Linearized Drag Due to Waves. « « v+ ¢ o « o o « &
Linearized Momentum Relations « « ¢ . « ¢ &« « & &
Wave Energy Due to Heat Addition. « o« o o« ¢« ¢ « &

Control Volume Approach to Thrust Minus Drag with

Heat Addition

Thrust from GYCIG Point"cf"View e 6 6 & o 6 ¢t & o & & 06 o o @ @

Thrust and Drag in Various Flow Regimes + . ¢« ¢ 4o ¢ ¢ o &+ « & &

Contrast in Thrust at Supersrnic and Hypersonic Speeds. « « « .

n oo o~ M

15
22




APPLICATIONS C" x'TERNAL BURNING. & 4 ¢ ¢ o « o 4 ¢ « o o o o o o o s o « o« 80

;,~ Model for Heat Addition Adjacent to a Flat Flates o « o o o o o o o o o o 80

‘ Forces on a Planar Airfoil in Supersonic Flight Due to Heat Addition. . . 84 %
t Allsviation oS Boattail Drag for a Plug Nozz)ee « o o « o o o o o o o o o 89 ;
Wave Trapping; Quantitetive Example « o« « ¢« v o o ¢ ¢ o ¢ ¢ o v o o o o o 93 i

Wava Trecping; Discussion of Numerical Example. o o o o o o o ¢ o o o o o 103
1 i Bas. Vlew inctizm with Jeat Addition; Planar Flow « o ¢ o o ¢ o ¢ o « « » 104 ;
; Base F . *roblem with Heat Addition; Axisymmetric. . « . « « « ¢« o« & « » 115 é
é Preiiminary Comments Based on : Cursory Look at Axisymmetric Case . . . . 120 %

i, ." Recovery Wing Heat Addition. . . « « v v v ¢ o ¢ 0 v o v o o o o oo 124
§ SUMMARY ANT. CONCLUDING DISCUSSION . « » « . &
REFERENCES. * o L . LI ¢ o o e ¢ ¢ o o o o . * o o . L * o . * o o * 130

: BIBLIOGRAPHY. @ @ O o o 6 © 6 & & a2 e e & &+ 8 4 & & ¢ O 4 e s O o 0 o+ o o ].32

i

AFPENDIX - Properties of Delta Function ., ., . . . . . v o v o o o o o o o o 1%
A 3
k- :
3
‘3
1A
- n
s 4
4 :
E E
o N
-y H
: :
- : {
3 b 5
= ] i
v Z
‘,; ’\ é
Al H x
5 s H
: ‘. %
if g 3
" )‘_ 3
= H :
3 ¢ ’
=t 'Y 4
2 i .
S Q ;
kL :
E: 3
5 " 2
o i
E
A3 + g
= 4
& H 3
E 3 ;
3 ; E
% 3
. v H
=
3 K]
- ;
= :
N :
. i
P e e D o R L




e TR S R i

i

b T AL

P TRy T R PR YL O B S Aty iR T SR I ARG A AT - Ty

Figure
No.

(3]

10

11

12

14

16
17
18
13
20

2

LIST OF FIGURES

Title

Classification of Flows wits Internal Burning
Classificatice of Viows w.ik BExternal Burning
Notation for Turb» s¢ Culculations. . . . . .

Mass Flow of Air as a Function of Flight Mach

Number,

Nozzle Pressure Ratin as a Function of Mach Number.

Area Variations in the Nozzle for Diffarent M., .

8]

Model of an Inlet Using Scurces « o« o« o o o o & &

Nacelle of Known Wave Drage. « ¢ o o o ¢ o o o o o

Momentum Control Volume for a Thrusting Body. . .

Ijeal Ramjet Represented by Sources, Sinks, and

Potential for a Line Source in Supersonic Flow.

S AN I e I A

S5 F

FLAHR

an Energy

Small Perturbation Heat Source in a Supersonic Flow . . .

Illustration of Quantities Related to Specification

Release.........-.......-.o..

Geometry of Wake Jownstream of a Heat Addition Zone

Line Heat Source at Angle © to supersonic Flow. . .

Heat Fronts and Conmbustion Fans .

Geometry for Combustion Fan . . .

Definition of Angles and Velocity Ccmjonents.

Sxternel Burning Scramjet . . . .
Control Volume for a Mass Balance

Flow Field Near a Wedge at Mach 2

vi

* ® o 4 e o

Disc
of Heat

2 At ] Cll S S

Page

\n

1
34
36

43

46
48

S ERIREEEET w0

2‘

;ﬁﬁ
FTORP IR U IR SR YT P T TP N ST TUSOUPRA SR ST SN I TR LT PRI AL IR VUPR TS JHC PP WO CINO Y GV DI E R I PEINI T,  SPTTRN: (P20 o, TS DR PRI R WML RS P00 o

%
i‘ﬁ?{.. IRV VX SVLIRT R LE ) B TRV LR LR S A (AP RR CTPWS ATRRS A ZE CAE T LV L JWRLE L QLY ¥ MoVIUTDS A SRR VI LV P 7 ST W T



Pl e e = AR,

TEPE T A B R N ot me w o

Figure
No.

22

23

25

26

N

28
25
30
31
32
33
34

35
36

37

38

39

40

Title

Drag Bvaluation Using Wave Energy o « « « ¢« o ¢ ¢ « o« o . &
Control Volume for Calculating Thrust of a Line Heat Source
ina Supersonic Flowe o ¢ ¢ ¢ o ¢ o o 4+ o o o o ¢ o s o o &
Control Volume for Calculating Thrust of a Line Source
Normal to Flowe ¢« o ¢ ¢ ¢ ¢ o ¢ ¢ ¢ 4 ¢ o o 6o s o o o o o o
Streamlines in Viecinity of Parallel and Normal Line Hest
SOUrCES & o « o o uw ¢ o o o o o o o o o o o o o s o s o o o
Wave Energy Due to Heat Addition. . . « ¢ & & ¢ v ¢ ¢ ¢ & &
Control Volume Approach to Drag and Thrust. « . « « « « « &
Three Flows with Two Different Ways of Adding Heat. . . . .
lollier Diagram for Heat Addition . . . & ¢ 4o ¢ & ¢ ¢« ¢ . &
Drag in Different Flight Regimes. . . . . + . ¢« ¢« s ¢ ¢« ¢ &
Contributions to Drag and Thrugte ¢« « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o &
Model for Heat Addition Adjacent to a Flat Flate, « . . . .
Heat Addition Adjacent to a Surface in Supersonic Flow, . .
Pressure Distribution Due to Heat Addition Adjacent to a
SUrfacCe « o ¢ v ¢ v ¢ ¢ 4 e b e e e e e et e e e e e e e
Streamlines in Region of Heat Addition. . « . « . . . . . .
Comparison of Nozzle Charscteristics. « « v« v ¢ ¢ ¢« ¢ o 4+ &
Wave Trapping « o ¢ o v ¢ ¢ 6 o 4 o ¢ o o ¢ v o o o o o o
Wave Geometry for Flow Along Flug Nozzle Without Heat
AdItions o ¢ ¢ ¢ 4 ¢ o o o ¢ 4« ¢ e s 4 s 6 e o s s e s e
Pressure Distribution on Plug .« o « ¢« ¢ o ¢ ¢ ¢ v « ¢ o o o

Heat Addition Region at Boattail. . . . &+ ¢ ¢« ¢« v ¢ ¢ o o &

vii

Page

52

56

59

62
64
67
70
72
74
76
8l
85

95
96

98

3
3
3
&
)
]
:};
j
1
3
b3
£
8
2
3
3
3
:
3
]
1
§
£
15.,
-
t'i
4
-
§
ﬂ;;‘;
3
:
!
3
3
k]
;:;é
e
3
3
ol
z
i
3
3
3

e




oy TRt S i [,
SECEI MBSO, 2.1 o egtey NE e TR A % B PR B Saeme ¢ er R g

: Figure %
E No. Title Page g
% 41 Solutions for Initial Slipstream Flow Angle . « ¢« ¢ ¢ &« ¢ « « « . . 100 %
§ 42 Wave Geomeiry for Flow Along Plug Nozzle with Heat Addition . . . . 101 %
é 43 Pressure Digtribution on Plug « . 4 ¢ ¢ ¢ ¢ ¢ o 4 ¢ ¢ o o o v o o o 102 §
? Lé Influence of Changing Nozzle Pressure Ratio with Fixed Heat %
€ AddItion. « v ¢ 4 ¢ v i h it h e e e e e e e s e e e e e e e s s e 105 g
; 45 Influence of Changing Heat Addition with Fixed Nozzle Pressure g
g RALIO o o ¢ o o s o o o o o o o o o o o o s o o o 4 s s o o a0 e s 106 §
46 Base FLOW o o o o o o o s o o o o o b e e et e e e ... 108
f 47 Pressure on Bdge of Shear Layer « « « o« v o ¢ ¢ ¢ ¢ o =« o o o o« o o 110 §
z 48 Interaction of Heat Addition Zones with Base Flow . + « « & « +» . o 112 %
i 49 Interaction of a Heat Addition Zoue with & Slipstream . . . . . . o 113 é
fé 50 Characteristics Solution for Axisymmetric Radial Expansion. . . . . 116 %
T 51 Flow Internal to an Annular Heet Addition Reglon. « o o » o & o o o 117
"f 52 Initisl Characteristics in Region Internal to Annular Heat Addition 119 §
; 53 Presgure Distribution Along Characteristics of Figure 52, . . . . . 121 §
:z 54 Streamlines and Flow Deflection . + & & v 4 ¢ o ¢ 4 ¢ o o ¢ & o « + 122 g
f 55 Base Pressure Increase Due to Heat Additiom . . . . . . . . . . . . 123 §
é 56 Comparison of Bgse Area for Planar and Axisymmetric Geometry. . . , 125 é
57 Spin Recovery Using Heat Addition . « « . v v ¢ v v v v v o o o . o 126
viii
3




RS RIEV I I Yo SR YRR i R R R
o

Cam o n ey weee o T, SRR

: LIST OF TABLES

3 Table No. Title Page
i I, Optimum Shapes ¢ « o o o o ¢ o o o « o o o ¢ o ¢ 0 o o o o o 2
.5 11, Values for Calculation of Turbojet Quantitiese ¢ ¢ ¢ o o « o 11

o I1I. Results of Calculation for Turbojet Performance and Areas. . 13

2 » v, Influence Coefficients for Area Change and Heat Addition . . 23

BO T L R o R M e i
A A R

aider
o

o ST v"‘ﬂ'!’:

-
-

s
e A AR




T TR FR T

Zier i

e

IS et

v i S

pesutatls it

YT TST AN
A e

"

“
it S N i 1 1 s
iR SRR

S

o

-
AR

e et

b X o @ m o

=}

LIST OF SYMBOLS

Speed of sound, ft/sec.

Area, ft2.

Chord, ft.

Pressure coefficient, dimensionless. Specific heat

capacity, BTU/slug °R.
Drag coefficient,
Compression wave,
Drag, lbr.

Unit vector for cartesian coordinatg system.
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Expansion wave,
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Index in delta-function representation
Nozzle pressure ratio, dimensionless.
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QUASI AREA RULE
FOR HEAT ADDITION IN TRANSONIC
AND SUPERSONIC FLIGHT REGIMES
Dr. Allen E, Fuhs
Professor of Aeronautics
Naval Postgraduate School
INTRODUCTION

In subsopic flow, drag can be attributed to viscous forces on the body
surfece and to the release ¢f vorticity in the wake. The vorticity is associated
with the generation of 1ift, In supersonic flow, there is a new phenomenon lead-
ing to drag; it is the radiation of waves from the body. These waves carry
energy whose origin is the work done by drag and vehicle motion.

For almost every case of & body flying through a medium, drag is considered
to be a degradation of performance. Consequently, considerable effort has been
devoted to optimum shapes giving minimum drag.

One approach for optimizing a body shape is to represent the body by sources
and sinks.(l) For a closed axisymmetric body, all sources and sinks are on the
axis, It is found that for a nonlifting body, the slope of the cross sectional
area curve equals the distribution of sources and sinks, f£(x). Distance along
the axis is x, By means of the calculus of variations, one can arrive at shapes
giving minimum wave drag. There are constraints on the body geometry, and the
optimum ghape depends on these corstraints. Two examples are given in Table I.

The shapes given in Table I are for minimum wave drag. Viscous effects are not

included, and the bodies are nonlifting.
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Table I. Optimum Shapes

R e AR P e

Name of Body Congtraints Wave Drag :

(2) s2

Von Karman¥* Ogive Given length, 4, and base area, S éq =5 3
n\1 ;

(3) 128 [ v°
Searg**Ogive Given length, l, and volume, V ==q E- ;
" i

*Jsed on low Altitude Short Range Missile. :

*#Discovered by W. R. Sears of Cornell University.

It was discovered by Lomax and Heaslet(A) and by Hhitcomb(5) that the
optimum shape for an axisymmetric body applies to slender bodies with wings and

rudders if one interprets the area distribution properly. It is the area cut by

the Mach cone. If one uses this area distribution from a three-dimensional body
to match the area distribution of an optimum axisymmetric body, then minimum wave
drag occurs. This procedure is known as the area rule.

For a body with thrust, there are several new variables introduced. Thrust
may be developed by adding heat to a flow internal to the body, Thrust also may
be obtalned by adding heat external to the body.

Consider external burning. Is there an area rule for a body with external
heat addition analogous to the area rule involving body shape only? For this case,
there are two functions to optimize. One is body shape, and the other is the
distribution of heat addition. Table I gives some typical constraints; an

additional constraint for the optimization could be specific fuel consumption.
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Instead of finding minimum drag, the procedure should give the best thrust-
minusedrag or zero thrust-minus-drag depending on the constraints, Since both the
distribution of heat and cross sectional area are involved, an appropriate.namo
is "quasi area rule."

When thrust is developsd by adding heat to a flow internal to the body, the
quasi area rule suggested in the previous paragrsphs does not apply. For in-
ternal burning, the waves due to heat addition obviously do not occur as in the
case of external burning. There is, however, a change in stagnation pressure
and temperatufe betwesn the inlet and nozzle. Also the velocity vector changes
from inlet to exhaust. An energy disc can represent those changes, This
report discusses aspects of the thrust-minus-drag problem for an airbreathing
engine with confined heat addition, Figure 1 illustrates the various problems
V% that can be studied with internal burning when the emphasis is on thrust-minus-
drag., The analysis is linearized. Two~dimenaional (2D) planar is the geometry
. of a propulsive wing., Axisymmetric 2D geometry is an isolated nacelle without
N fins or wings, Addition of fins or wings yields the 2D propulsion with 3D body.
vé The connection between these two geometries is the area rule.

2? Figure 2 ouilines the problems of interest for external burning. The

;é analysis is linearized. For the 2D planar case, the heat and mass sources can

3 be distributed over & surface or throughout a volume, Volume distributions must
meet requirements for slender body theory. Axisymmetric 2D bodies are related

'g to 3D bodies by the quasi area rulse,

4 The linearized 2D planar flow with heat addition has been studied extensively.
A solution to the 2D axisymmetric case does not appear in the scientific

literature. Solutions for 3D bodies with heet addition have not, as yet, been
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obtained. In order to develop the quasi area rule, these solutions are

egsential building blocks.

PROPULSION WITH INTERNAL HEAT ADDITION
Introduction

For a supersonic aircraft, the variation in nozzle pressure ratio (NFR)
is very large, This requires a variable geometry nozzle. Under certain flight
conditions, the nozzle setting and nozzle flow result in large base or boattail
drag.

One motivation for treating the propulsion~airframe problem as a unit from
the area rule point of view is to obtain new design approaches. First, the
typical variation in NPR and nozzle geometry will be calculated for a
Mach 2,5 aircraft. These results will be discussed to illustrate the problem.
Second, the model for representation »f a propulsion system with internal heat
addition will be developed. Third, approaches to solution of the model will be
ovtlined,

Exhaust Variation with Mach Number

The aim of this section is to calculate nozzle pressure ratio, nozzle area
ratio, mass flow ratio, and tnrust of an ideal turbojet as a function of Mach
number, Knowledge of the trends is essential in understanding aircraft exhaust
problens.

Consider an ideal turbtojet with an ideal inlet. There 1is, however, a

restriction on the Mach number, MZ’ into the compressor. The thrust is given by
F ﬁag)
ll owrd el Y (1)
be hdg d

where ha is a ms <z flow of air, and hd is mass flow of inlet at design conditions,
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For the inlet, the various areas are illustrated in Figure 3(a). Statinon 0

TR e Tt o RSIT y

is at a point in the freestream where Po is ambient pressurs, Stations 1 and 2

..

are inlet throat and compressor face respectively. The mass flow retio is

TR

m
a 007t
BT (2)

3 vhere MO is flight Mach number, and MOd is design flight Mach number. Areas
hys A, and Ap are identified in Figure 3(a). Both a fixed area and variable
geometry inlet are considered. The ratio AO/At is obtained from isentropic
flow tabies for given MO for the variable geometry inlet. For a fixed geometry
inlet. AO/At comes from flow tables, entering the flow tables with the Mach

number downstream of e normal shock at MO. The mass flow ratios are shown in

Figure 4 for both cases. & variable geometry operates supercritically and

f- swallows more air. A variable geometry ramp or spike inlet may have superior

mass handling capability at subsonic speeds.

b . The thrust per pound of air for an ideal turbojet is given by

agM, 1 , 1 lﬁ "
YR ) e ‘

l:'l'lj

B R S Y (o

f where the symbols not previously defined have the following meanings

freestream speed of sound

[
o

R (o A e
it

: 1} TTO/TO = ratio of stagnation to static freestream temperature
E ; T, = TTB/TTZ = stagnation temperature ratio across the compressor
The symbol T * deserves more discussion., It is
* = =
T = TN = Ty/Ty (4)
i . where T, = TTL/TT3 = gstagnation temperature ratio across the burner or combustor.

5 ¢ The value of TTL is limited and has a maximum value. Hence for a given engine

and altitude, T* is fixed when ths engine is at maximum power or maximum TIT.
7
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The station numbering is shown in Figure 3(b). The throat area for the

nozzle is

) ]/RTTs h

b 7F Prg

neglecting fuel addition., R is the gas constent. ' is a function of the ratio of
heat capacities, ¥, and has a velue of .683 for vy = 1.4, The nozzle pressure ratio,
NPR, is pT8/p0' A ratio of Ay to the design value is

byg  Bg NPR Y Tpgg

The area A8 is obtained from NFR, isentropic flow tables, and the assumption
Pg = Pp Two useful ratios are AS/Ac and A7/Ac, i.e., comparirg nozzle areas with
compressor face area,

Calcalations were made for the values shown in Table II.

One of the results of the calculation is NFR which is shown in Figure 5, Some
of the other results s«re summarized in Table III The symbols for the turbine ratios
are Ty = Tos/Tyy and 7y = pps/pyy.

Figure 6 illustrates the area variations required for a supersonic turtojet
operating at maximum TIT for different MO. Examination of Figure 6 and the data in
Table III shows why turbojet nozzles usually operate underexpanded at design Mach
number, The percentage variation in Ay is 38 per cent based on design A7. The
percentage variation in A8 is 77 per cent based on design AB. NPR varies from 4 at

low subsonic flight to more than 25 at design MO of 2.5.
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Table II. Velues for Calculation of Turbojet Quantities

Maximum turbine inlet temperature
Altitude

Freestream dengity

Freestream speed of sound
Compressor area

Tip radius at face

Hub radius at face

Maximun Mach number at compressor
Inlet throat area at design
Design flight Mach number
Compressor pressure ratio at

100 per cent corrected speed

Ty,

2000°F
Sea Level

. 002378 slugs/rt3
1117 ft/sec

8.05 £t

2 £t

1.2 ft.

0.65

7.1 rt?

2.5

11
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# Table III. Results of Calculation for Turbojet Performance and Areas g
3 M —— — — - T "
: ; o NER Ky A , t t ;
% § 0.2 5.98 625 421 .526 . 829 .518 %
; ¢ 0.4 5.63 627 423 .542 .825 .508 §
i % 0.6 5,05 628 425 574 818 495 ‘ é
e 0.8 42 .67 427 620 .808 75 g
? % 1.0 3.77 .650 AN 677 796 45 é
: L2 315 663 W43 W62 L1800 .42 :
- 1.4 2,58 702 Jil8 860 765 391 :
% : 1.6 2.1 <72 AT 1.C2 742 .352 §

1.8 1.77 750 503 1.20 719 315 E

E 2,0 1.47 792 537 1.42 694 .278 :
. 2.2 1.2, .861 582 1,72 .665 +240 :
5 2.4 1,07 .950 .642 2,07 .63 .203 2
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S 2.5 1,00 100 685 2.28 .616 .183 ;
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As shown in Figure 6, to obtain ideal expansion the nozzle is converging-

e

diverging for all MO illustrated. Usually the nozzle is a simple converging

nozzle from subsonic through transonic range of MO' This results in a large
boattail area. At the design MO the exit area for ideal expansion significantly
exceeds the maximum area of the propulsion system. The nozzle is cut off, relative
to ideal, at some area appropriate to maximum engine area. The result is under-
expansion and a ballooning plume., A shock wave may originate at the diverging

streamlines of the plume, giving a drag increment,

Model for Propulsion with Internal Heat Addition

3 . Consider a propulsion device as sketched in the top of Figure 7, To
represent the wave drag of the inlet, it is necessary to duplicate streamline
A-A. It does not matter what the details are of the inlet geometry internal
to the streamtube bounded by A-A.

8 The inner body which generates a flow having streamline A-A is shown. Note

k: that it is not the same shape as the inlet spike. A distribution of sources on
:E the axis could generate the inner body as well as streamline A-A. Note that the
E ’ spike shock wave does not have the same angle as the cowl shock wave.

'§ If one applies the momentum relations to the control volume of Figure 7,

the thrust minus drag is given by

3 T-D 1 ) 1 D

. =;; p,,uEdAw”-; (pE p)dA-—m+2 juudA-

J% A Ay

(7)
,; (uj + ui)dA

. ; AL
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where U U, and v, are the dimensionless perturbation velocities arising

from the nacelle. It is apparent that for the case where the exhaust exit
defines a plane, as illustrated in Figure 7, the thrust and drag can be

clearly separated., Waves generated by the exhaust plume do not influence T ~ D.

Following the analysis suggested by the model of Figure 7, one can obtain
a nacelle of known wave drag, Figure 8 illustrates the concept. Start with an
ogive of known shape. Flot the streamlines in the flow adjacent to the ogive.
Pick the radii Ig and rp suitable for the nacelle, Insert the nacelle within
the streamtube, The wave drag of the ogive and nacelle will be the same. The
drag can be calculated using the potential function for the ogive. In the
lower part of the figure, a nacelle with a spike inlet is shown.

Conisider some thrust device inside a momentum control volume shown in
Figure 9, How does one modify the variables so as to L lange conditions on the
surface of control volume and improve T - D? What does one have available to
change the wave drag? Availsble variables are: (a) number and location of
nozzles, (b) velocity profile at nozzle exit, and (c) body geometry.

To obtain an optinmum configurstion, one must have a method to represent
the body and exhaust analytically, The analytical representation can be
subjected to the calculus of variations,

The body can be represented by sources and sinks. Changes in stagnation
pressure, stagnation temperature, velocity vector, and other flow quantities
make representation of exhaust more difficult.

Carrying the idea of Figure 7 further, let us look at an ideal ramjet.

For an ideal ramjet, the following equalities hold true:

17
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For an ideal ramjet (or for any other propulsion device satisfylng the above set

T

of equalities), one can represent the flow by sources, sinks, and an "energy
dise.,” This is illustrated in ['igure 10; stations 1 and 6 are identified in
Figure 10, The inner body duplicates streamline ABC, The inner body is formed
from the source~sink distribution in the right-hand column of Figure 10. The
change in density, velocity, and stagnation temperature is achieved by an
"energy disc." In fact, that defines the energy dise, It changes the flow so that
the equalities list above is correct. Tane sources, sinks, and energy disc shown
in the bottom of the right column would have the same thrust and dreg as the
ideal ramjet sketched in the left-hand column,

This model looks as if it is satisfactory for an ideal ramjet, but it has
some drawbacks:

1. The energy disc is not a heat front or other simple fluid flow.

2. When A, £ Agy it may be difficult to apply the energy disc.

3. For the case Prg # Ppp» Some means of changing Pp must be added.
The energy disc is bounded by a streamtute. Changing Pp within the disc gives a
mismatch across the disc in regard to streamline shape.

A satisfactory way of specifying the conditions at station 6 is needed, and
the energy disc has been suggested. One wants to retain sources and sinks for
two reasons. Wave drag is readily calculated if you know the distribution function.

The distribution function can be optimized to yield minimum wave drag.

20
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The energy disc represents the propulsion device. A particvlar engine

generates changes in py, TT’ and velocity tetween the inlet ana exhaust, For

the case of a plane for an exit as shown at station 6 in Figure 104 one does not

need the complexity of un energy disc. Bquation (7) indicates that drag and

thrust are separable for this case. When one varies quantities (a), (b), and
(c) discussed previously as available, independent variables, then the energy

disc may be an attractive model.

This gection is closed by noting that a model has been proposed but

has not been developed,

EXTERNAL BURNING; BASIC EQUATIONS AND SOLUTIONS

One-Dimensional Heat Addition

To provide a basis for comparison with subsequent sactions, one-dimensional

heat addition will be briefly reviewed.

There are several approaches to one-dimensional heat addition., For unsteady

flow there is the self similar technique developed by Sedov.(é) We consider

steady flow only here. There is the famous solution for constant area heat

addition, i.e., the solution by Rayleigh. Rayleigh flow is discussed in most

gas dynamics books.(7) When there is simultaneous variation of area and heat

addition, the technigues outlined in the Princeton Series, Volume .IiI, are

applicable.(s)

The influence coefficients developed by Shapiro and Hawthorne(g) will be

discussed here, Table IV summarizes the influence coefficients for heat

addition and isentropic flow with area change. The influence functions relate a

fractional change of a dependent variable, say MZ, to a fractional change of the

independent variable, 4 or hT. Soc far as heat addition is concerned, the

22
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velocity, u, and static pressure, p, change as they would flow into decreas-

ing area, For u and p, heat addition and area variation produce the same

AP AR Ty te n i ol e SR

result.

For unconfined flow with heat addition, there are some analogies between

the flow due to a particular body shape and the flow due to a given distribution

e R T R T L

of heat addition. These analogies, which are limited in scope, will be pointed

out as they arise in subsequent discussion. The fact that heat addition and a
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body may influence the flow the same way may be understood using the du/u and dp/p

influence coefficients,

The influence coefficients are the first terms in a Taylor series expansion
of the dependent variables in terms of the independent variebles, Many of the
results of linearized heat addition in an unconfined flow can be related to
influence coefficients. This statement is applicable, for examble, to heat

fronts and combustion fans.

Linearized Equations for Combined Mass and Heat Addition

The equations cf motion for steady flow with heat and mass addition are as

follows:
Continuity div(pu) = m (8)
Momentum P * Vo+m=0 (9)
- u2
Energy div gu(h + =) = Q (10)

In the preceding equations, m is the rate at which mass is added per unit
volume. Likewise Q is the rate at which heat is added per unit volume.
To linesrize these equations, one introduces perturbation quantities wi:ich

are defined as follows:

P= Pt P' 35 P=pytr
u= ex(U +ut) + eyv' +eu'

When the perturbation quantities are introduced, the resulting equations are

i 1 ' ' =
Continuity p,u! + PVy * Upl=m (12)

PreUntty * p; - mUy

Momentum (13)

0

bR T

A,

e il T g i B

T e MU 1 L A D L b i e NS e L . aaic

P et sl SN

p X3 . \ . . - » . ..
E&«}.m ot e e 1AM L A A R AR R S B RS Y L A et v A, B e BP0 i MM A M 3y X b ¢ A O B S i 0



BR o]

o ennd

Al e O R
ALENBES AL |

o AT o a g i W L AT A A e SN 5 il o g L
R T R s PR Py SR T IRY SV

<
1

y

2
—_— e - —] P — - M) =
Energy ¥ -1 m 5 (Y 1 )=Q (14)

We have formulated a 2D planer flow so that w' = 0. To avoid writing
subscript 0, ve now drop it in subsequent equations. The notation with
subscript x means partial differentiation with respect to x.

Starting with Bquations (8) to (10), one could obtain the linearized
equations appropriate for heat and mass addition in axisymmetric flow. The
equations have been solved for mass addition (sources) but st for heat
addition in-axisymmetric flow.

The solution for a source in two-dimensional planar fiow will now be
obtained. Consider a row of point sources evenly distributed along the
z-axis. Axis orientation relative to the flow is shown in Figure 1l. For
a point P(x - X, ¥ - yi), only the sources within the Mach forecone influence
pont P as shoun in Figure 11, To find the potential in two-dimensional flow,
add up the sources along the z~axis from k to d. Points k and d are

illustrated in Figure 11, From the geometry of Figure 11

2, 2 2
24 = (x - xl) tanp - (y - yl) (15)
Integration of a row of point sources yields the potential
z
d dzl
p(x,y,0) = - (16)

Lo, 7 Vix - x )% = B3 - By - 1)

This integrates to

25
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% 2 4
§ d ;
; 1 bz ;
: #(x,2) = « — sin 1 1 (17) ;
1 2 2 2
1 X - ) - -
; fr Voo -0 - P -n? 2_
‘ Inserting the limits gives ‘
Bix,y) = i (18)
- 2p
% The potential is a constant. Think of a series c¢f Mach cones with apex
é at the z~axis. Upstream of these cones, the potential is zero. Downstream
1 of the envelope of Mach cones, it is congtant. One can represent this by
1 :
: #(x,y) = - % 1 [(x - %) * By - yl)] (19) :
where I is the unii function. The velocity components are, for a unit
“ gource strength, '
3 1 S S T - :3
’ and
: _g =1
1 V-‘a‘g=*§5[x-x1):ﬁ(y~yl)] (21) ;
The (+) sign in front of p gives right-running waves, whereas the (~) sign
gives left~running waves.
The solutions for a heat source in supersonic flow are(lo)
.: ul = - {y = 1) 6(x - py) (22) {
2ypp ;
3 vr= de=Ld 505 _ gy) (23)
2vp :
=1 - :
E pr= L=l g gy - L o3)a giyr(x) (25) %
) 2a’'p a'l
3 27
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One can verify that there are the appropriate solutions when m= O and Q¥ O

by substitution into Equations (12) to (14). The second term in Bquation (25)

1s a wake., Prescure in the wake is the ambient value, and the vclocity -
returns to freestream value. The solutions in Equations (22) to (25) af;
valid for all x and y including the source point x = y = 0. The symbol q,
which has units heat/(length)(time), will be discussed shortly. The line heat

source in a planar flow is illustrated in Figure 12,

Similar solutions can be written for the case of mass addition; these are:

3 uf = - % 6(x ~ py) (26)
v'e 356(x - £y) (27)
p = 28 5(x - ) (28)
i— p'=%?%—25(x-ﬁy) (29)

Substitution of Bquations (26) to (29) into Bquations (12) to (14)
indicate these are solutions except at the mass source point x = y = O,

With Equations (22) through (29), one has solution for volume distribution

3 of heat and in regions where m= 0, This is adequate to describe planar
bodies with adjacent heat addition zones.

Volume Heat Addition

Since the heat may be added throughout a volume rather than a line source
(the z-axis in Figure 11), it is worthwhile to formulate heat as a volume

release. Define, as in Equationa (10) and (14)

Q= heat
3 ~ (span)(area)(sec)
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Then we define

- heat
9 span)(sec
q = Qixdy

Another area element may be better than dxdy. Some element with its sides

parallel to a Mach line is preferred. We think of Q= Q(x,y). Figure 13
is a series of drawings illustrating the variables.
To get heat per unit span

L 1
H= Qixdy = QUi (20)

0-0 if Q = constant

Heat released in the complete volume is H = Hs.

heat _ heat
H= sec i = (span)(time)

Now to tie into the 2D flow equations, we use Equation (22) as an example,

ut = -.(I_'.l).g_é(x_py)

7
2rpp (1)
At a point on : characteristie, u' results from a source on that same
characteristic, If there is more than one source on that characteristie,
one adds the influence of each.
(v = 1)(qy +q,)
1 2
ut = 6(x - 32
For many heat sources, in fact n heat sources,
1=n
! 2 - {r -1) - 9
= = E q, 8(x - py) (13)
i=1
30
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The equation for u' is correct if one thinks of

= heat
q = My = (span)(length)(sec)

when the heat source is distributed in the volume. When heat sources are not
dfscrete but are distributed, then one wants to integrate along a charecteristic. 1
let s be distance along the characteristic. We express Qs in terms of Q and ds

., q; = Qsin pds = dq (34) :
The perturbation velocity is

s s ,
u' = - Q-ZYLP%I Qsinpds= - gﬁ;-ll Q(x,y)ds (35)
0 0 :

Since s,x,y are related quite simply

LR ST S N ]

X = 8 cos p, y=s8sinp, x = By
one can integrate u' several ways:
s y
sin p Q[s cos p, s sin ﬁ]ds or QU py,y)dy

PR T W R A T

(36)
or Q(x,x/p)dx/p
0

Referring to the region bounded by 0 < x <L and 0 <y <2 in Figure 13(b) )

and for caae Q = constant inside the region

e,

By padiay

S
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y
Jsin pas=ql= J y = ¢l = Q(x,x/s)%§ = (tan p)ped = ¢t (37)
0

[ A TR PN LA 1]

0 0 *
£ The pressure perturbation would be
: o
, In terms of Q(x,y), the perturbation quantities are
] -1
K u! = - %Y_PTl Qx,y) sin p ds (39)
: 0
1 s

| v! .(X____l“ 1

= Y50 Qx,y) sin p ds (40)
3 0
;

3 p!'= S%;f’lm Qx,y) sin p ds (41)

0

FRTGS Fog e

‘ G Sx_%_lm Q(x,y) sin p ds - LE—UI"[ [ Qx',y*)8(y - y')X
. a
! y'

2a B
0

BCLN B
o EAY S R B L A% e S i b e R VAR PES A Rl L 30 st

el

Gt

ey

(42)

4
-

I(x - x'")dx'dy!'

g : The wake is given by the integral above; as an examrle for x>x, + L

x! = Xy + L
£ : -1
Puake(y) = - L—azu Qx',y)dx! 42)

t =
X xi

3 where the geometry is sketched in Figure 14.
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For a point inside the heat release region

xt = Xg
-1
Plaxg(xpry) = - H5= Qx',y)dx! ~ (44)
&u
t =
x Xy
The symbol X is defined in Figure 14.

Consider a distribution of line sources which foran a plane at angle ©
to the flo.w, as illustrated by Figure 15, Terminology similar to that use’
in :;upersonic wing theory, i.e., subsonic and supersonic "leading edge." v
employed to identify two cases, ® 2 p or M. @ 1. The normal Mach number M_
is M sin 8. Since sin p = 1/M, the normal Mach number is

= sin ©
n sin)z

(45)

You can sse from an exanination of Figure 15 that the heat source can influence

flow upstream if Mn <1, Hovever, if Mn> 1, the heat source does NOT influence

flow upstream contrary to statementa made by Tsien and Beilock.(lo) Also it

is apparent that point P is influenced only by right-running characteristics for

Mn < 1, whereas P is influenced by both families of characteristics for Mn> 1.
The perturbation velocities for a heat front will now be obtained.

Using Bquation (22) and integrating along the heat front, the formula for u' is

L)
u'(x,y) = - h-z-;—p%)g 8§ [(x -8 cos 8) - p(y - s sin G)] ds (46)
-0

where 8 is distance along the heat front. Consequently,
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_{y -1)g -1 x - By
ut = 2ypf B 8in © -~ cos 6 5["cos9-asme]d"
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-0
(47)

- (y =1)g
>pp(f sin © - cos ©)

2 Since p = ‘/Mz -1, it is also true that p = 1/tan p. Using this fact

4 (y ~1)g tan p sin

x 1

: R Typ sinip - 0; (48) ?
For left-running waves, p is positive; and for right-running waves, p is z

negative. For a subsonic "leading edge," © is less than p. Downstrsam of the

YRS,

heat source for Mn <1, Equation (48) indicates ué will be negative; upstream

otk

of the source ul'1 will be positive. In addition
lu&l > |u&| (for Mn< 1)

where subgcripts u and 4 indicate upstream and lownstream respectively.
For a supersonic “leading edge," which is illustrated on the right-hand
side of Figure 15, the lef't rumning Mach wave gives a ui vhich is negative,
: The right-running Mach wave gives a uﬁ which is also negative but which is less
in absolute value than ul“. Subscripts L and R dennte left- and right-running

waves. Consequently,

W > <O

- Now let's look at v'; from Equation {23) one obtains for this cases:

*3

©

vi(x,7) = ﬂz_Y:;lhj & [(x - s cos 8) - ply - 8 sin 9)] ds (49)
.‘* -00
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Integration of the 6-function yields

vt = (y =1)a 1 . (y=1)g __sinp (50)

2¢p P sin © - cos © 2rp sin (6 - p)
For the case Mn <1, v"l is negative, and vé is also negative.

Furthermore

v'l > 'vél (for M_< 1)
For the case M > 1, v v] is positive while vy is negative. In add: “ion

]

vd=v lVR|>0 (forM > 1)
which means the flow is turned toward the line source much the same as an
oblique shock wave. For Mn < 1, the flow turns away from the heat front.

A natural question is, "Is there any special direction to the

perturbation velocity vector?" Let -v; be the resultant perturbation velocity

vector. It is given by

tan p sin ta.n n sin n -' sin p _—s8inn (51)
sin(6 -~ P sin(Q +n) :in(8 - p) ~ sin(6 + p)

The algebraic signs are correct for the case Mn> 1 which means 6 > p. The

v =-eC

symbol C equals (y - 1)g/2yp. Let a be the angle of the perturbation

velocity vector relative to freestream direction. Then

sin p sin n
tan o - SR ] _hal6 Sl (52
sin{(6 - n sin(8 + p
Manipulation of Bquation (52) leads to
tan @ = - 1 sin pcos 8 _ 1 (53)

tan p cos p sin 8 tan @
The conclusion from BEquation {53) is that the velocity vector is normal to
the planar heat source. Since this is so, one can transform the supersonic

case of heat addition tc an equivalent 1D problem. To do ihis, one uges
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m 5 (54)
i where uw = U sin 6. Proceeding by subgtitution of components {.om
3 Bquation (51) intc Equation (54) gives
£ du 1 h
4 s — (55)
3 Usind 1-M cT
v n p

which is precisely the influence coefficient result when properly interpreted.
4 See Table IV. For a subsonic "leading edge,” the velocity increases, This
means that the flow is turned away from the planar heat source for Mn <1
(analogous to Prandtl Meyer expansion) and toward the planar heat source for
3 M2>1 (analogous to oblique shock wave).

As has been demonstrated, one of the ways of adding heat which lends
itself to analysis is by means of a heat frunt. The example chosen by

5 (10) (11)

Tsein and Beilock was a heat front. Oswatitsch considers other

5 aspects of heat fronts.

Heat addition at a front is comperable in complexity to linearized heat

additicn. Combustion is a volume phenomenon. However, if the length of the

heat. release region is ruch less then a body length, a front is a reassonable

approximation., Detcnation is a heat front of a very special nature.(lz)
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A heat front with a subsonic leading edge located next to a wall will be
preceded by an oblique shock., The cblique shock turns the flow away from the wall,
and the heat front turns it back parallel to the wall, Recall that for a subsonic
leading edge the heat front can influence the flow upstream. The corresponding changes
in pressure are shown., The net change in pressure is positive although the heat
front decreases pressure. .
A heat front with a supersouic leading edge will be followed by an expansion
fan if the front is adjacent to a straight wall. Once again the net pressure .
change is positive, The heat front turns the flow away from the wall, and the
fan redirects it so as to be parallel to the wall,
Adding heat %o a supersonic stream decreases the Mach number, When suficient
heat has been added, the normal component of the Mach number downstream of tae

heat front, an, will become unity. The amount of heat required to make M , = 1 is

n2
known as "critical" amount of heat. With a heat front having 2 supersonic leading
edge, heat can be added until an = 1, If more heat is added, the flow illustrated in
Figurelé(b) changes to thet shown in Figure16{a). The oblique shock decreases

the flow Mach numbsr changing the leading edge of the heat front from supersonic to
subsonic.

Adding heat to a subsonic flow or a heat front with a subsonic leading edge
modifiea the flow upgtream. One cannot specify the flow immediately ahead of the
front. Critical heat addition does not have the same impact in the subsonic case
since the flow upstream will te modified to edjuszt to the isrge beat addition.

-A detonation wave can be thought of ss a shock wave followed by a combustion zone
or heat front. In Figure 1&a) if the oblique shock and the heat front had the same

angle, it would be an oblique detonation wave vrovided the Mach rumber and amount of

heat released wsre corrects
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In the Prandtl-Meyer expansion, conditions are constant along a
characteristics Centered combustion fans are possible with conditions
constant along a ray. However, the ray is not a Mach line, and the
normal component of Mach number need not be unity. Combustion fans could
occur in subsonic as well as supersonic flow.

If Mh’ tlie normsl component of Mach number, exceeds unity, the fan will
turn the flow away from the wall like a compression, This is illustrated in
Figure 16(c) on tha left-hand side. If M is less than unity, the flow would
be turned downward as shown in Figure 16(c) on the right~hand side.

Starting with the continuity equation in cylindrical coorainates (r,p,z)
and setting 8( )/3z = 0 and 8( )/8r = 0, one can derive the continuity

equation for a combustion fan. It is

dw2 dlnp
mMrtH gt O (56)

The velocity components are illustrated in Figure 17, Heat addition does not
cause an irrotational flow to become rotational. One additinrnal equation is

the condition for irrotational flow which is

dw,
T Y2t O (57)

The rate of heat release controls dinp/dﬁ. One simple combvstion fan occurs
for ddnp/dp = constant, For this case, Equations (56) and (57) can be
readily integrated.

There is a particularly interesting expression that can be derived for
the pressure coefficient associated with a heat front in hypersonic flow.
Consider a heat front at angle 8 relative to the main stream. The velocity

components and angles are illustrated in Figure 8. The momentum equation is
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Pl + plul = p2 + pzuz (58)

which can be rearranged, since from continuit§ plu1 L p2u2

2
Pz“"1“’11“’22 Py () - u,) (59)
From the geometry illustrated in Figure 18
W -u
2 _h™% (60)

sin(% - e) sin b

Noting that U; = w; sin @ and combining Equations (59) and (60) leads to
P, = Py = Py¥y¥, tan € sind (61)
M2 2
I = sin“@>> 1, heat addition has little influence on w or p. Hence

W) = W,. For hypersonic flow Equation (61) becomes

Py~ Py = 2(-p:L 1) tan & sinb
and the pressure coefficient is

c, = 2 tan © siné (62)
This can be compared with the Newtonian expression which is
c = 2 sin"6 (63)

Equations (62) and (63) provide sufficient tools to explore the external
burning ramjet shown in Figure 19. Angle & is shown in the top figure and
appliss to Equation (63).
Heat Addition and Vorticity

In this section it is shown that heat addition does not change an
initially irrotational flow to a rotational flow. The curl of the velocity

vector should be zero. For subsonic flow, one uses the equations from Tsien
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and Beilock(lo); and for supersonic flow, one uses Equations (22) and (23).

S (A
curl v = ez(bx By ) (64)
Substituting Bquations 22 and 23 into Equation (64) yields

curl ¥ = ;;{Sr?Yp—llﬂ[. 2ntx = #7) (x - 7))+ 5l ongtx - p) (e - 1)) (65)

B R e

Recall that ﬁz = M2 -~ 1. In the above analysis, & has been represented by

B(x - py) = naig\fé exp[— n(x - py)z] (66)
Since curl ;rvanishes, one concludes that heat addition does not generate
vort%city.

To gain additional insight to diabatic flows, it is worthwhile to examine
some simple flows using familiar method§. One such case is a mass balance,
Consider a heat addition region as shown in Figure 20 with a control volume,
Half of the control volume can be used for the mass balance., This half has

width w, Writing a continuity equation for mass flux across coatrol volume

yields

P = (p +p' vt (L = pl) + 2(p + pt)vipl + pu,(w = 4/2) + (p + p"q)u 172 (67)

where E' and v' are averages of perturbation quantities along ﬁt illustrated
in Figure 20, The density perturbation in the wake is p‘:,. Bquation (67)
reduces to

pviL= - plu t/2 (68)

when gecond order terms (e.g., p'v') are neglected. This can be rewritten as
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Substitution of Equations (40) and (42) in (69) gives an equality, as one

expects.,

EXTERNAL BURNING; THRUST MINUS DRAG

Drag~--Subsonic and Supersonic

In subsonic flow of a perfect fluid around a body, there is no force on
the body, either 1ift or drag. Motion of a body through a fluid would require
work if thére were a drag. This energy would appear in the fluid. For a
perfect fluid, the perturbations in the fluid decay rapidly at large
distances from the body. If the bocdy has been moving for a long time and if
there were drag, there should be significant motion of the fluid at large
distances.,

In supersonic flow, there is significant motion at large distances even in
a perfect fluid. The waves caused by body motion move out from the body eventually
decaying to sound waves, Far from the body, the flow consists of outgoing sound
waves, These waves carry away energy. Work overcoming drag suilies the
energy.
Relation Between Flux of Entropy and Drag

It is well known (See, for example, K. Oswatitsch.<13)) that the flux of
entropy through a control surZace can be related to drag of a body within the
control surface. To get a feeling for the extent of the waves causing drag, a
sample problem was worked. The results are shown in Figure 21.

Consider a 20° wedge at Mach 2, as shown in Figure 21. The wave geometiry

is shown and has been calculated using the methcd of finite waves. Width of
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the base of the wedge is b. The lateral distance to a point on the shock
wave is £. Distance 13 is illustrated. The tflux of entropy in and out of
the control vclume (neglecting the wake) is equal to entropy jump across

the shock wave times the mass flux., The first expangion wave intersects the
shock wave at point 2, The we re between points.l and 2 accounts for 25.2
per cent of wedge drag. The shock wave between points 1 and 3 accnunts for
39.3 per cent of the wedge pressure drag., It is necessary to go out 179
base widths to obtain 99 per cent of the drag.

The conclusion from this little study is that the waves are important to
great distances from the body. In axisymmetric flow, the bow wave would decay
more rapidly.

Linearized Drag Dus to Waves

A wave is a mechanism whereby energy can be propagated. The energy takes
two forms in the linearized or acoustic case. These are flow work and kinetic
energy. It can be shown(lL) that an integral over space of the flow work equals
the intégrél over space of kinetic energy. As an example, congsider a half-..
diamond airfoil shown in Figure 22, The airfoil is moved exactly one chord
length from position ABC to position DEA, and the undisturbed fluid is at rest.
This motion does work Dc where D is the drag and ¢ is the chord. The work appears
as energy within the waves. Changes in the fluid motion occur normal to the
waves, The disturbance originating at A now appears at A', B at R', C at C!', etec.
The motion within the wave below A'B'C' is due to earlier airfoil motion to the
right of position ABC. The work done by drag moving one chord length appears

within the volume, V, bounded by A!'B'C'DEA. Consequenily

5




SR

~
N

) S I aad

\\\\\\\\\\ WAKE

FIGURE 22. DRAG EVALUATION USING WAVE ENERGY.
52

)
>
0

14
i

T gk

E‘ﬁ
3
s S B e LS e N R st B LA




RS

De = [p (T +u)?+ vz]dV (70)
‘ where u and v are perturbation velociiies, When there is heat addition, as
illustrated in the lower part of Figure 22, Equation (70) changes. The force
on the body is now thruat minus drag. Heat has been added. There is a

4 left-running wave, AG, which moves into the fluid above the airfoil. Energy

T{ is added to the fluld bounded by ACG. Heat is added in a volume bounded by BFE.
'{é Downstream of this region there is a wake., Note thet in the region BAC'B! the
mass sinks cause u' and v' to be positive¥* whereas the heat sources cause u"
and v' to be negative. In region JAC'B' the mass sinks decrease p whereas heat

increases p. The energy equatinn associated with the waves now is

(T - D)e + (heat added) = % fp[(U +ut + u")2 + (v + v")z]dv

3 v

] (1)
‘;; ‘ + J.pd(%) ¢ (energy)av + (energy)dv

v WAKE AGE

f?' Equation (71) is more conceptusl than quantitative. There are some questions
‘li% yet to be answered. Does the integral of flow work equal the integral of

15 kinetic energy for waves caused by heat addition? Incorporating heat addition

G ; into the waves increases complexity. OCun this method of drag and thrust

% « . ation lead to useful results and new insight? These questions will be

: =
‘} *we us¢ the notation that masssources cause perturbation velocities u!' and v';

heat sources cause perturbation velocities 1,
heat sour cause perturbati locities u" and v
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considered in the section Wave Enargy Dus to Heat Additvion which follows
shortly,

Linearized Mumentum Relations

In two dimensions, x and z, tha drag formula in three dimerieions ie

simplified. It bscomes

=
Y
*
3
i
-

D= - J(p - p,dz ~ JP(U + u)[(U +u)ds - wdx] (72)
C c

The corresponding lift equation is

L= X(p - pm)dx + j‘pw[wdx - (U + u)dz] {73) i
where C denotes a closed contour surrounding the vehicle or wing. For
: small perturbations due to mass gources and sinks, the above equations ﬁ
5 becouze
: D=p, j‘uwdx + %p » [ﬁzu2 + wz]dz (74)
Note that drag is due to second order terms, i.e., uw, u2, and wz. First ,
“ order terms drop out. For lift the small perturbation form is 5
5
L= «p)0 J (udx + wdz) = p UT (75)
3 In a following section the equivalent formulas for L and D will be derived ;
for combined mass and heat addition, First, consider drag or thrust on a heat
addition zone, 5
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To illustrate the application of the heat addition equations, let us
calculate tie thrust of a line source of length, {, oriented parallel and
normal to the stream. Eguation (76) is taken from Chapter 7 of Liepmann

and Roshko; (15)

D=~ (pul)nkukdﬁ. - j‘pnldA (76)
A A
In their notation X =X and X, = Yo The control volume is shown in Figure 23,

If Equation (76) is negative, one gets a thrust. Using the numbers for

surfaces in control volume:

D= - (g U)(- U)dA - j (o, - p‘}AKE)UZdA -

A A

j (U - ")<p¢ - P'wAVE)(" 1)(- V')dA - (77)
A

5

(U - ut)py, = p'yyp) (+ 1)(v?)da
A
The integral over Al can be integrated. The integral over A, can be split
into two parts, and the part with P, can be integrated. Equations (22) through
(25) were derived dropping terms in second order in v'/U, etc. The integrands

of A5 and A6 reduce to pyUv', Consequently, Equation (7)) »ecomess
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D= - pwUZAl + pwUzA.’ + (p'WAKE)Usz -2 | p liviaa (78)

A A

3 5

We now need sxpressions for p’WAKE and v', which we obtain from

Equations (25) and (23) respectively. Proceeding with p'
1

Puakg(xs¥) = ﬁi;;—ul‘lq 6(y - y)I(x - x')ds (79)

0

where s is distance along the source; x and y, the coordinates where you want

to evaluate ""m(E; and x' and y', the coordinates of an element, ds, of heat

source, When x> x*, I = 1; since we are evaluating A.a-int.egral, x will be

greater than x'. Also ds = dx! for the case at hand.
i
.(Ia:_llgs(y -y') dx! = b‘_.g_l.ﬁl& Sy - y*) (80)
aluy adl

0

Paake(¥) =

Substituting Bquation (80) into A,-integral of Bquation (78), we get

a

j ot P | s Babgy  pindey o = Lalu (1)
aly
A._) A,;

In a similar manner, an equation can be obtained for v'! from Equation (23)s

!
vi(x,y) = ( -(%;;-1-)-96{(:( -x') - ply - y')]ds (82)
JO

Substituting Bquation {82) in A -integral of Bquution (78) yields

5
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4
0Lt 6 tx - x1) - gy - y)]axtax (3)
A5 0
The coordinate system is chosen so that the heat source starts at x' = 0 and
ends at x' = {. Also y' = 0. The coordinate of point ¢ in Figure 23 is
(ﬁyj,ys), and the coordinate of point d is fﬁys + f,,y5). Consequently, the

limits of integration are as shown

5y5 + L ‘t.
pwU(x-z;—p—l-ZQ ‘[6[(x -x') - §y5]dx‘dx (84)
PYs 0

A change of variable helps evaluate the integral; let z = x - py,j.

1 1
pwU(y-z;'p—lzg Jr j&(z - x!)dzdx' = p,,u(ﬁf—'z'—“%zﬂé (85)
0

The integral in Equation (19) is in the standard form as shown in the
Appendix so that it is readily apparent that it has value 1. Now combine
Bquations (78), (81), ard (85) to give

p= X = ]2* U_, pmu(r_'_ll‘i&) (86)
a 2vp

which vanishes since 32 = vp/p. Supersonic heat addition in an unconstrained
(no walls) flow gives zero thrust or drag.

Now look at the case where the heat source is of length 1 but normal to
the streamlines, This is illustrated in Figure 24. Equations (78), (79), and
(82) apply; however, ds is different as 18 the limit of integration. Put

the origin of coordinates at the center of the heat source., Equation (79) becomes
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1/2
PuelY) = 11;;—11119 j §(y - y' )y’ (87)
-1/2
The A,-integral in Bquation (78) becomes
1/2
f v Sl;gui)ﬁ I 5(y - y')dy'dy = (1-‘;%2!-“ (88)
-3/

since the integrations over y' and y overlap over the region - £/2 to £/2.

For the perturbation velocity, the equation for v' becomes

1/2
vi(x,y) = J k?;;ug&[x - By - y'i_ldy‘ (89)
“1/2
where Vs is the coordinate for plane AS. The As-integral is
/2
fP,,UV'dY =f ﬁr—%%‘"“gs[x - Blyg - y')]dy'dx (90)
A A - /2

The limits of integration for x are ﬁ(y5 -4/2) to ﬁ(y5 +1/2). To obtain =
standard form for the integrand, we must eliminate P in the 6 -function. This

we do by letting z = p(y5 - y') and dz = - fdy'. Equation (90) is now

pmn(%p%)-g b (x ~ z)dzdx = pwU(r'z-"Y-fgh[ﬁ(ys + %) - 5(1’5 - ‘g’)] (91)
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The limits of integration for both z and x in Bquation (91) are p(y. - 1/2)
5

to s(y5 +1/2). Combining Equations (78), (88), and (91), one finds

(v -Dalu  [i+  Oqlpu
D= 5 -2 = 0 (92)
a 2yp

which is what we expected.

It is interesting to draw the streamlines in the vicinity of the heat
sources; see Figure 25, For the parallel heat source there is a conceptual
difficulty which has a resolution. The "stagnation" streamline* C goes
straight back since v' is an odd function and must be zero at y = O. One
can think of a streamtube bounded by streamlines B and D. Continuing, one
can ghrink this gtreamtubs so that there is very little mass flow through it.
Yet the streamtube diverges at angle 8. A finite amount of heat is added to an
infinitesimal stream yielding a finite angle 8. Strange! One avoids this
difficulty by using volume heat addition. The case of the heat source normal
to the flow is more easily digested. Streamlines F and J are acted upon by
characteristics of a single family., Streamline G passes through the heat
source into a region where it is influenced by both left-running (gives + v')
and right-running (gives = v!) characteristics. In this region the streamline
is not deviated from its original direction, Streamline G then moves into a
region where only left-running characteristics act on it., It is deflected by an
amount 8. Finally G moves into the wake where it accelerates and assumes its
original direction. The speed along G is (U, U - 2u', U - u', U) as it moves
from region to region. Streamline H is in the plane of symmetry; as a result,

it does not deviate from freestream direction,

*A body will stagnate the flow; however a heat source does not do so.
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Wave Energy Due to Heat Addition

The model for determining wave energy due to heat addition ig shown
in Figure 26. A heat addition zone EFGH is translated its own Length L in
time L/ugp Its new position is AFEL, The heat released is (hiL)(L/u,).
3ince there is no force on the heat addition region, no work is done moving it
from EFGH to AFEL, The question of forces on heat addition zones was
discussed in the preceding section., All of the heat energy released must
appear in the waves and in the wake.

In the time L/uy,, the disturbance at J has moved to point K. The
disturbance at F has moved to B, The dashed lines AC and BD would be stream-
lines if EFGH were stationary and tne fluid moved by. The energy content of
space bounded by ANCEL is the same as that inside FIMHE, Part of the energy
added appears in the region ABDC. This is the wave energy. The remainder
appears in the wake in the region EFGH. From B to P, work is done on the
fluid to compress it. From K to D, work is done by the fluid as it expands.
The flow work cancels, We are now ready to write the emergy equation,

(93)

hf‘L2 =2 kinetic energy + | energy in
u in ABDC wake EFGH

The factor 2 comes from the fact that waves go both up and down in Figure 26,
The kinetic energy in ABDC is
L L cos )
Feo uﬁdxdy = %pm uﬁ sin p dgdn (94)
x Ty 0 O
where dx and dy have been replaced by a coordinate system x =¥ and y = 1 sin j.

The symbol u represents the perturbation velocity normal to the wave., It is

equal to
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ui = u'2 + v'2 (95)

where u' and ' are given by Equations (39) and (40) respectively. The
magnitude of v! has been plotted in the upper portion of Rigure 20. Inserting
Bquation (95) into Equation (94) and recognizing the functional form of v!

(and u') as shown in Figure 20, one arrives at

pt 2 2 L
2KE in ABDG =2 um) + 'y ¥2dE + (u!® + 12) as (96)
prsin pcos p Fz -EI Un vm \

0 2

The value of vn'] has been indicated in Figure 20, It is the maximum

perturbation velocity. Integrating Equation (96) yields

2KB in ABDG ) _ 2,2 , .2 2. 2y gy
(Lp sin p cos p) - 3(un'1 + vx:1 )§L + (un‘1 + vn'l Wy - gd) =

(97)
(w12 4 12 #®
=(utt + V1)L - )
The energy in the wake is
energy in| _ _ ~ I
(wake EFGH) pmchi(Tw T,) = pwcpTwL{Tw (98)

The distance FG is the length L. According to small perturbation results,
the weke has freestream velocity and pressure but reduced density and increased
temperature. Knowing these facts and using p = pRT, Equation (98) becomes

/ energy in\ _
\ vake EFGH) e TLLte, (99)

The density perturbation in the yake p‘; can be obtained from Equation (44).
Substituting Bquations (39) and (40) into Equation (97), substituting
Equation (44) into Equation (99), and combining the results in Equation (93)

yields
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Ve b 3 2rp P 8 Uy '
WAVE ENERGY WAKE ENERGY

From Bquation (100) it is apparent that the energy appearing in the waves is
second order. The wave energy was based on uéz + v;2 which is second order.
The wake energy reduces to QLLz/um. If Equation (100) is to be an equation,
the wave energy must be neglected.

There are some important conclusions from this exercise, First, the i
wave energy is second order. Second, most of the energy due to heat addition
appears in the wake, IEnergy radiated away by waves is small compared to
energy deposited in the wake. i

If one examines the linearized momentum equations in two dimensions, as

given in thre section, Linearized Momentum Equations, one finds drag is related

P B3y

3 to an integral of second order terms. As shown in the discussion of Figure 21, %
'é drag can be related to the waves generated by motion of a body. A conclusion %
;% is that wave energy resulting from either drag or heat addition is second order %
in the perturbation quantities.
é Control Volume Approach to Thrust Minus Drag with Heat Addition :
?i As an example of a two-dimensional planar flow, examine Figure 27, A E
r; half diamond has a region of volume heat addition indicated as a shaded area. %
:E The dotted lines outline an image heat addition region above the shaded region. %
Vg Part of a control volume boundary is shown as a dashed line. Mach lines are §
i drawn from the body to the boundary of the control surface., Below the boundary §
2; are plotted the perturbation quantities for that location on the boundary. At é

the very bottom are the pressure, source strength, u! and v', These are constant

T
R SRR

to mid chord and then switch to values opposite in sign.
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The perturbation quantities due to heat addition are plotted about the right-
hand side of mid-page. Hsat addition increases pressure, slows the flow, and
deflects it downward. If the two plots were to scale, the positive pressure
increment due to heat addition would excesd the negative increment due to flow
expansion (mass sinks). The body would have positive thrust minus drag.

The magnitudes of the perturbatiors due to heat addition are proportional to

Le length of the characteristic (Mach line) passing through \l.e heat addition
regions both real and image. Note that p', p"*, ut, u", v', and v" are of
é opposite signs.
Let's look at drag and 1ift contributions due to the portion of control

volume shown. In Bquation (72) dz is zero. Hence the drag contribution

VLR T P P

D= j p(U + u + u')(w' + w")dx (101)
Multiplying the terms yielda

,

>,
DS TRE oy ity

: D= J (prl + pUuw" + pu'w! + pu'vw" + pu"w‘ * pu"w")dx (102)
; 1 2 3 4 5 6

The following summary gives the contributions (+), 0, or (-).

Term 1 2 3 4 ) 6

Otoe/2 () 0 (+) 0o o0 O
E ¢/ toc (+#) LN (+) (=) (=) (+)

PR PR

The integral of pUw' over a full chord gives zero; however, the integral of
3 pUw" makes a large thrust contribution. Terms 3 and 6 give drag. whereas terms

2, 4, and 5 give thrust.
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Lift is obtained from Equation (73). Once again for the segment of

control volume illustrated, dz is zero. The lift contribution becomes

L= (p' + p')dx + \j;(w’z + 2uiwt + w"2)dx (103)
1l 2 3 4 5

The followiag summary gives the contributions of the various terms.

Term 1l 2 3 4 5

Otoc/2 (+#) 0 (+#) 0 ©
c/2toc (=) (+) (#) (<) (+)

é Tne pressure p' averages to zern, whereas p" gives a 1ift. The cross term
§ wiw" reduces lift,

To optimize the heat addition, the airfoil shape must be expressed
analytically., F .at addition also needs to be described by some function of

x and z. Heat rolease need not necessarily be uniform,

% Thrust from Cycle Point-of-View

i% The thrust due to a propulsion device is given by

A F=ilw-w) +alp, -p) (104)
i If one evaluates the equation at the Treiftzplane, the pressure term may or

1 may not drop out. This is ons item which Oswatitsch(ll) digscusses. In

2 'Equation (104), F is thrust,and f is masr flow rate of fluid which receives

é a velocity increasa w -~ w,, over the freastream velocity woe

b Congider three flows ag sihcwn in Figure 28, Heat is added at stagnation

conditions and at some Mach number eother than zerc. The pressures at the

exhausts are all equal, i.e., Po™ Py * pé = pg. The Mollier Chart which depicts
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INFINITE CROSS SECTIOM

]

W T W
_._’ e

dq

dq

(m ISENTROPIC WITH NOHEAT

ADDITION; THIS IS A REFERENCE
W,

(b) ISENTROPIC WITH HEAT
ADDITION AT STAGNATION

(¢) ISENTROPIC TO STATION 2; ADD
HEAT 2 TO3;ISENTROPIC 3 TO4.

FIGURE 28. THREE FLOWS WITH TWO DIFFERENT WAYS OF ADDING HEAT,
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the three flows is shown in Figure 29, It is aprarent from energy considerations

that
L2 _ 12 :
dq +5wh = 3w, + (b, - hj) (105)
Continuing
1, 2 2\ a ~
Slw, =) ) T wdw = dq - (hA - hé) (106)
Now
gw > 0
i dg > (hL - h!) % dn (107)
w, > wé =
“p
The slope of a p = constant curve is
dh| _
E) = T (108)
P
Combining Equations (106) and (108) leads to
5 3h
wiw = dg - dh = dg ~ 52| ds (109)
p 0
The change in entropy of the flow is given by
ds = %9 (110)
q

A subscript q is used to i~dicate this is the temperature at which heat is
added. Equationg (109) and (110) yield
_ T
wdw = dq(1 - ) (111)
!
If one compares flow (a) witi flow (b) cf' Figure 28, then the temperature
ratio in Equztion (111) is Té/PTz. If one compares fiow (a) with flow (c), the

temrerature ratio is Té/'l‘j. To have dw > 0, one must have T <Tq.
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As a numerical example, consider flight at M= 0.9. Heat 1s added at
M= 0 in flow (b) and at M, = 0.5 in flow (c). Enough heat is added to
accelerate the flow so *hat M3 = 0,6, The same amount of heat is added in
flow (b). The results e.s that wL/wé = 1.055 and u/w} = 1.091,

Bquation (111) is not usually applicable to supersonic or hypersonic
flow. The entropy change in the exhaust was attributed solely to heat
3 addition, In supersonic flow, shock waves cause entropy changes. Further-
more heat addition may alter the shock wave geometry.
Thrust and Drag in Varicus Flow Regimes
: For subsonic flow, the pressure term in Equation (104) is zero. For
i supersonic flow, the pressure term if evaluated in the Trefftzplane is not
zero; however, it is extremely small, To see that the pressure is not zerc,
4 : examine the flow illustrated in Figure 30. The entropy in the Trefftzplane

is greater than ambient; ds > O, If dp were zero, then pwdw equals - Tds

so that dw { 0. Entropy is related to p and T by Tds = cpdT - dp/p = cpdT.

Consequently dT > O. From p = pRT, it follows dp/p < 0. The continuity

2 equation pwA must be satisfied. As shown in Figure 30, the streamtube area A
does not change significantly. The changes in both p and w cannot be negative
and still satisfy continuity. If dp > O, then dw continues to be less than
zero and dT > O. Also dp/p > dT/T. Consequently dp > O.

K To account for the drag, the area A must be quite large. (See Figure 21.)
The streamtube influenced by a propulsion system will be small as shown in

Figure 30. It is an area of approximately A  in Equation (104). The pressure

at the Trefftzplane is due mainly %o drag ard is spread over area A, albeit not

uaiformly. The pressure term in the thrust equation is applicable to area Ae.
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FIGURE 30. DRAG IN DIFFERENT FLIGHT REGIMES.
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Since thrust equals-drag, the pressure term will be of the order of Ae/A. It
can be neglected for subsonic, transonic, and supersonic flow.

For slender bodies in hypersonic flow, dw/w is small., If the thickness
ratio is T= (thickness)/{body length), then dw/w is of the order T2, Heat
addition also has little influence on dw/w, & fact that can be verified by
examining Fjgure 7.3 in Volume I of A. H, Shapiro's The Dynamics and Thermo-

(7)

dynamics of Compressible Fluid Flow. In hypersonic flow, heat addition

causes large charges in pressure and static temperature.

In hypersonic flow, the shock waves are close to the body. The drag is
concentrated in a smull area, AD; see Figure 30. Thrust prouicing devices
would influence an area comparable to AD. Consequently, the pressure term in
BEquation (104) must be retained as a significant factor,

One can calculate forces on a body by suitable integration of pressure.
Pressure in excess of ambient, on forward-facing surfaces causes drag; define
L 18 a3 pressure drag; Dp, Pressure less than ambient on r¢ -rward-facing
surfaces causes drag; define this as suction drag, DS. The ratio Ds/Dp is
shown in Figure 31 as a function of Mach number. Suction drag is very
important in subsonic, transonic, and supersonic flow. However, as M
becomes large and enters the hypersonic region, Ds becomes insignificant.

In fact, Newtonian theory assumes ambient pressure Py 1s zero with the result

b =0,
]
A propulsion device will increase pressure on rearward surfaces as shown
ia Figure 31, Heat addition must increase pressure so that the area under the

curve labelled "with heat" equals the area under the curve, Dp. In supersonic

flow, the thrust device simultaneously cancels a large Ds and balances Dp‘
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In hypersonic flow, the thrust device does thw same thing except that in
hypersonic flow Ds is negligible. Heat addition in hypersonic flow balances
Dp but counteracts only an insignificant DS. This has implicationas con-
cerning propulsion efficiency.

One more point is that in hypersonic flow Dp is the major drg con-
tribtution, and this can be related to the bow shock wave., In supersonic flow,
Dd is important also so that the waves orig.nating at the rear end of the body

or at the rearward-facing s rVaces are of equal importance to the bow shock

wave in calculating drag.

Contrast in Thrust at Super.onic and Hypersonic Speeds

Consider a body immersed in a flow as shown ir Figure 30. The force on

the body in the direction of the freestrzam is

F = f [(pu2 - pmui) + (p ~ pm)]dydz (112)
A

If there is no energy addition and if A is the area of the large streamtube,
F equals D, (It has been assumed that expansion waves have made pressure
increments negligible along the streamline from a to b in Figure 30.) If there
is energy addition tc the siream and if A is, oncs again, the Trefftzplane in
Figure 30, Bquation (112) yields thrust minus drag. If one evaluates
Bquation (112) using the small streamtube in Figure 30 with flow i, then F is

approximately thrust.#*

A i s B e

*It is not, of course, possible tu separate out the thrust accurately using
Equation (112). If it were possible, how much more simple the propulsion
integration problem weuld be.
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The continuity equation is, neglecting fuel added, é

0= (pu = pug)dydz (113) k

A

é The energy equation in integral form is E
i o ey v
0= l-pu(h +—5) = p Uu(h,+ 5 * q)| dydz (114)
s A
E In Equation (114), q is the heat added per unit mass, and v is the component E
of velocity normal to the freestream. By combining the preceding equations
; in the following way %
u, g

(up x thrust) + (h,+ q ~ ?) x continuity - energy = u,F

. one obtains %
. ('Ll - un)z ¢ v£l g
E u,F = pu(h - h +q) + uw(p -p,) -~ pu 3 dydz (115) ;
| A
: Substituting h = e + p/p into Equation (115) yields E
3 (u - u,,)2 + v . %
3 uF = {fu[q - (e - ew?] - plu - u,) - pu dydz (116) :

A

LR,

LEORC

There are three terms 3in the integrand of Equation (115). The term pule - e)

3z is the flux of energy thrown away in the jet. The term pu‘§ - (e - e”)] is the ;
LY /]

energy converted to work or jet kinetiec energy. The term p(u - u‘,) ig the flovw 3
ﬁ‘ work, and the last term in the integrand is the flux of kinetic energy of the §
] 7

i
.
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jet relative to the stationary surroundings. The left~hand side is the rate
at which the thrust does work in overcoming drag.

For transonic and supcrsonic flow, all terms are important. In hypersonic
flow, (u = uy,)/u,, v/ugy 1. Changes in velocity due either to shock waves or
heat addition are small, However Ap/Hn’ AT/T_, or Ap/pw are of the order of
unity or larger. Based on these conments, one can neglect the jet kinetic
energy in hypersonic flow. In hypersonic flow, the tern plu - uw) varies as

1/M2 a3 ' 111 now be demonstrated. Rewriting the term as

= Apyw. _ )
plu = u,) = pu (1 + puo)(uw 1)

one can introduce the Mach number dependence. In hyperscnic flow, Ap/gpﬂsz
where K is the hypersonic similarity parameter TM, The velocity perturbation
varies as'T2 as discussed previc .sly. Substitution of these quantities into

the floy work term yields

Pec

p(u - 9,) - (L ¢ k) (k°) (117)

Compared to the heat addition term in Rquation (116}, the term p(u - u,) is

small for M 3> 1 and K = 0(1).% Bquation (116) reduces to

F= p{q - (o = ew)]dydz (118)
A
which is valid for ¥ >>1 and K = 0(1). In hypersonic flow, Bquation (118} tells
us that the thrust is simply due to the heat added less the amount of internal
energy thrown away in the exhaust. In supersonic flow, it is more complex; see

Equation (116).

*Requiring K = C{1) is not a severe restriction.
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APPLICATIONS OF £XTERNAL BURNING

In the preceding sections some of the analytical tools for understanding
external burning have been discussed. It is worthwhile to look at some
possible applications of external burning, Four applications will be examined
briefly in the following section; these are forces on a planar airfoil due to
heat addition, transonic boattail and base pressure alleviation, bage pressure
nodification in both the planar and axisymmetric cases, and spin recovery of
aireraft,

Before discussing the applications, a model for rressure rise due to heat
addition near a flat plat will be discussed. This model uses some of the
results from EXTERNAL BUKRNING; BASIC EQUATIONS AND SOLUTIONS and from
EXTERNAL BURNING; THRUST MINUS DRAG. The model is a refinement of a similar
ﬁode] by Bi]lig.(le)

Yodel for Heat Aduition Adjacent to a Flat Flate

Figurs 32 illustrates the geometry. There are three zones, Zone I is
the freestream which is supersonic., Zone Il is the heat addition region
separated from Zone I by a heat front. JZone II is bounded by the wall, heat
front, and streamline ¢ Zone III is downstream of the obiique shock com~
prising the region below streamline c. The heat addition turns the flow by
an angle 8. The streamline deflection angles and static pressures in regions
I and IIXwmust be equal along stireamline ¢. In the following development,
terms in 92 are dropped as being ncgligible.

The deflection angle i3 approximately:

g = ——= {119)
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The continuity equation is E
1 - = + = é
P13yY) - Pa¥y¥y = Pyuslyy * 8x) = puy, (120) :
Across the oblique shock there is a prassure increase equal t{o %
.
Ppmmy _THS v é
= = (121) 1%
P Mf -1 p z
Y :
Equation (121) defines P. Define Q' as ths heat addition per unit mass of é
air flowing in the streamtube defined by streamlines a and c. The energy g
%
equation is 3
g
1 - "',
cp'rTrl * Q4 °pTT3 (122) g
or as
1=
cpTT2 + QY cpTT") (122)
4 Using Bquation (7.14) from Liepmann and Roshko,(IS) one can derive the
5 following momentum equation
, 2 2
3 - PaUa¥p * Pqlly¥y " PV * Py¥y ~ pSx= 0 (23)
% Combining equations (119), (120), and (123) yields :
92\12)'2(1113 - uy) + (py = p,)y, * ex) = 0 (124)
3 A solution exists for Uz = U, and py = Pye let's examine the consequences
; of that solution. From the continuity equation and equation of state
PoU,Ys  Paugy
3 Ti = T3 2 (125)
% Since uy = W, and p, = Py, this reduces to
I, ¥
== (126)
2 Y2
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The energy equation becomes

12 12
pla * 23U * Q3 o Ty * 3

or (127)
cpT2 * Qé3 = cp’l‘3

since u, = u,. From Equations (126) and (127)

Y3 = ¥a Q53

Ys cpT2

(128)

In the notation of the influence coefficients of Table 1V, Equation (128)

can be rewritten as

[=%
‘_’B’

(129)

=

dA
Ny

-3

c
P

In view of the equality expressed by Bquation (129), the influence
coefficients give the result dp/p = O and duw/u = O,
The heat added by the heat front must increasc pressure in the

streamtube a-c by an amount squal to pressure rise across the oblique shock,

Using this fact

dr Y"izg i Y’“"f“'zz

P e 7o)

Combining Bquations (119) and (128), the heat added in Zone II is
Yy = cp‘l‘zex/y1 (131)

The difference between Tz/'I,‘1 and 1 is the order of ©. Hence
L
s cpTlgx/yl (132)
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Totsl heat added to wurn the flow by an angle © is

QY = O, + @4y =01 v%‘l-) (133)

The heat addition Q]'_3 turns the flow by an angle ® and increases pressure

by the amount given by Bquation (130).
Forces on a Flanar Airfoil in Supersonic Flight Due to Heat Addition

A problem which has been studied by several investigators is external
burniig near a two-dimensional wing. One such study is that of Mager. (17)
Mager uses the linearized heat addition formulas, Equations (22) to (25), to
find the forces on an airfoil in supersonic flight with heat addition in
adjacent streamtubes,

Consider an area bounded by Xy and Xp in the x-direction and by a
surface and a parallel side at distance hi’ See Figure 33, Within this ares,

add heat Q. From Equation (41) the pressure at the surface is

p. [r-1laM (¥ - 1)@
A % sinpds=—~;-ﬁ-;—— (134)

Where does the factor 2 come from? There must be an imgge heat source above the
surface; otherwise, there would be a v with flow through the wall., Combining
Bquation (134) and the definition of H [H is defined in the paragraph
preceding Equation (’31).] gives
t leo w
P, Y = 1)HhM

T h,(xp = x, Japp (135)

In Equation (135) the gquantity h varies from O at x = Xy to hi at x = xy + hi cot p.

It remains constant to x = Xps and then h decreases linearly to zero at

X = Xp + hi cot p.  This is 11lustrated in Figure 3j.
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It is of interest to examine streamlines near the surface in the region
of heat addition; see Figure 35. The streamline passes along ABCD. It is
shown dashed with an exaggerated slope below. The streamline is straight
from the time it enters the heat addition region until it arrives at A,

This is so since aA = a'A. From A to B the right-running characteristic grows
in length relative to aA, Hence the streamline is curved from A to B, From
B to C the difference in length b'B - bB is constant; hence the streamline is
straight but at an angle to the mainstream, From C to D less and less of the
right-running characteristic passes through the imsge heat addition region,
and v' becomes smaller and smaller until finally the streamline is horizontal
at D. From C to D the gtreamline 1s obviously curved,

When the streamline is moved closer to the surface, as is the case in
the lower part of Figure 35, the deflection is considerably less. It is
obvious ths. *: otreamline oa “he surface will not be deflected since
aA=a'A=. =cC=c'C=d'D= dD for this case.

Compa. ©ic veg 25 and 35, -ne gains some insight to the quandry
discugssed in . aection with Figure 25, When the heat addition is confined to
a mathematical line, as in the top of Figure 25, one has difficulty because of
streamline deflection near the source. However, when the heat is distributed
a8 in Figure 35, there is no problem,

Based on Figure 34 and Bquation (135), it is apparent that one has in hand
the tools necessary to study the forces on bodies due to heat addition, at
least in the linearized case. Refer to Mager's paper for performance of

an airfoil with heat addition.
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Alleviation of Boattail Drag for a Plug Nozzle

In the Mach number range 0,8 Mo € 1.2, which i. the transonic regime,
the nozzle gross thrust coefficient decreases : r.ificantly., A factor which
mal- * {kie irangonic dip all the more important is the corresponding increase

in tne vransonic drag coefficient, Typical data for a plug nozzle are shown in

Figure %, which is copied from the NASA Memorandum by Harrington.(ls) Part (z)

is of interest here while per: {b) ie not Two fl¢is phenomena cause the dip
in Cfg. One is the change i:. .:g tc:ust. rigure 36(d) shows the behavior
of plug thrust. Another influe-.e is vve.t2i. rag identified in Figure 36(c)
as primary flap drag. Plug thrusu decres '« and boattail drag increases in
the transonic region.

Is there anything that can be doie to correct the loss of the transonic

(19)

Rebtone shows that by going tc small plug angles, some of the loss of

plug thrust can be recovered, although there is still a dip near M = 1.,2.

Harrington(le)

uses a translating shroud thet has a pronounced influencs on
the boattail drag; however, the loss of a plug thrust partiaily remains.

An a2lternate approach is to burn externally on the boattail., The direct
thrust produced by high pressure on the boattail hss very poor SFC. However,
a flow interaction may occur which greatly inereases thrust. This phenonenon
has been termed "wave trapping" by Fuhs. Figure 37 illustrates some essential
features of the interaction.

With heat addition on the berattail, the turning angle, 6, of the primary
nozzle flow is less. See the angle 8 in the region labelled (1) in Figure 37.

At the slipsiream between the external flow and the nozzle flow, the expansion
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(a) Nozzle gross thrust coefficient,
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(b} Secondary total-pressure recovery requirements.
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{Reproduced from D, E, Harrington. )
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waves are  leclad as expansion waves without heat addition. These reflected
2xpansion res further reduce the pressure on the plug, The reflection is

voint (2) in Figure 37, With hest addition, expansion w.ve

S A et BRI

as a comprassion wave increasing pressure on the :lug,

m (?) without heut addition *he pressure is low, and the Mach

-ge. The obligue shock (4) has a shallow angle. It is necessary
to matceh s stream pressure and flow direction for both the externul ard
rozzle flow At th= match conlition, the jpressure® rise across the oblinue
shnck iz s 1, giving large expension o: the nozzle primary flow.

t addition there are several changes to une flow ia region (3).

ncreuased. The flow 1s deflected to larger values of 8. Thre lach

ered in region (3 due to neat addition. EKither a weak or a strong

he oblique shock occurs. Yhen the strong shock solutioa occurs,
the extzrna flow -iownstream of the obligue shock is high subsonic. ZExpansion
waves ref 1. ad off the plug surface are not transmitted into the external

o
-

lov. Henc wsaves are trapped and are refl=cted as comyrassion waves. The

comprescisr  a1ves maintain a high plug rressure. Having looked at the inter-

20 w""m. i

&

action quual  atively, let us now examine the results of a sample quantitative

calculation.

et ihuder o

oy

w.ve Travyir ; Quantitative Example

(18)

The sar. geometry plug nozzle was selected as thet tested by Harrington,

Wl

The primary ° ap forming the boattail was turned inward at an angle of 17°, A

freestream M L number of 1.31 was chosen for the calculations; one reason for

Lo P, oSS i

Lok

selecting tt. value of Mach number was to keep the external fiow supersonic

throughout © n th was no heat addition. A nozzle pressure ratio of 6 was

e

e N




T ol T T T e S T e S T T MR R R

R A AT AR A T € s AR e raym ey v fe

chosen., According to Figure 5, at maximum thrust a higher NFR would be more 5

appropriate for MO = 1.31., NPR of 6 is characteristic of cruise. In order that §

staniard gas tables could be used, the ratio of heat capacities, v, was set é

equal to 1,40,

To obtain the flow field, a planar, two-dimensional, finite, wave calcuia- ?

tion prsocedure outlined in Section 12,2 of Lieprmann and Roshko(IS) was used, §

< When the zone of influence, as defined by Oswatitsch(l?) in Section 3.25 of his %
?, book, spens a distance small compared to flow radius, the two~dimensional planar %
;f procedure can give quite accurate answers for local values of flow. Near the g
% plug nozzle throat, this procedure should give small errors; however, near the §
é rlug tip, sizeable error should be expected. In addition, the change in wave %
i angle at the intersection of finite waves was neglected, §
; Results of the calculation are shown in Figures 38 and 39, Figure 38 shows %
é; the wave geometry. The dashed line is the slipstream between the external and %
'j the nozzle flows, %
% Coasider the E_ wave* separating regions (1) and (2). It is reflected g

:é as an expansion wave from the plug, becoming an El wave. The El wave reflects g
s %

from the slipstream immediately downstream of region (4). The value of the

reflection coefficient is + 0.8, This means the reflected wave is Er with a

F? strength of 0.8 of that of the incident Ey wave. At the next reflection from the
ji slipstream, the coefficient is ¢ 0.12, which means continued expansion. At the
E, next reflection, the coefficient is - 0.,08; there is an extremely weak com-

fé pression wave reflected from the slipstream. A4s a ccnsequence of the expansion,

*E meang expansion, and C means & compression wave, Subscript r is for a
right running wave, whereas subscript 1 is for a &eft running wave.

g 9

>
3
&
ﬁuw A L AR b b N, MK Tl K229, LA ISR A R B T

- bk




KRS Y S I R R R SR G

L T L R e AT S AP A L bR BTG T e S bl e L TR RO R i N L A PR D i il B e e A G RS R E O e s T S e e 30 e b R R I

|

: w.
M j

§ ;

; i ¥
¥

,m i

y : b

_.w. )

e

,. ‘NOiLIGaV
. 1V3H LNOHLIM 31ZZON 9NT1d ONOTV MOTd HO4 AHL3NO03O 3AVM '8€ 3uNOId

S

4

TR dend e sy oot

AP R e B B R G T

Sppriay

/

e hl P

:l::‘:‘&‘
!
|
!
o !
N |
l
/
R
| ~
!
!
!
W)
o
~
o A
@
q
e
95

~ :DNI ’
B"g) ><~__2 N0 >SZOK //

N\

\

WL

¥

S 3

b 4 SR B AR L e WY D LR RS - - —e . - - e cMNe R ek b o Gaen a o~ v FEA DAL L K VG bk 0l

i AR S rgan s s .\
& o KT




R T e T I B T T B 0 T T B e o T R VT T P e T R IR W3t RS o A O Y SR S R (5 TR G e 04 5 viit,

4 . ﬁ
3
H

k
4
:

LS e mewr e e
'

‘9N71d NO NOILNBIY1SIA JUNSS3IUd "6€ JUNOI=

7777772222222

—ane.

T o R v e

A

q%«‘;w—@iu_:il s

3¥NSS3¥d LNIIBNY

|
|
|
l
l
|
|
|
|
|
!
—
|
|
|
|
SN

o'l

AONUOSONUN NN N NNNNAIANNNYN

A

s i B b rir 2 0 N ¢ o N Ly e b R e S g\ S e S e o .
i LSRR G vt St o s Aot A b JaR e SRR e b A e G LR S



YA g 0 off ot WY gy, LR A A L
B b A CE A S T A S i Lt b

thrust, equal to ~ G.097.

W
“a

extending partially over the plug,

SRR b SIA ALUEO RIS
B e e e abanatd L Y

REEY

of being correct.

P TV S R Y

kS
e
i

kY

3
2
=
3

The length of the boattail is L.

V.

region is {.

Equation (41).

n - e n

. ————

g
g
7y
R
3
*743
e

then multiplied by 14,

the pressure along the plug drops below ambient as shown in Figure 9.
below ambient on the plug results in a negative plug thrust.
curve shown in Figure 39 yields a value of tie ratio, plug thrust to ideal nozzle
Direct comparison of this calculation with Harrington's

data is not possible since all his tests at M= 1,31 were run with a shroud

correct algebraic sign and the correct order of magnitude.

better than the correct order of magnitude; it is probably within 53 per cent

Now let's add heat to tle region near the boattail as shown in Figures %7

The pressure increase due to heat addition is obtained from

EZvaluation of the integral yields

oy ~21)Mnd

p, = aﬁ

Equation (136) can be solved for the heat addition h, BTU/volume second, and

afp'l BTU

time rate at which heat is released.

-

" (y = 1)M (length)(sec)

Multiplication by 2vr, i.e., the circumference of the boattail, leads to the

and ﬁf, the fuel flow rste. The heat release rate is given by

o . _ 21raflp!
mell = T2 1§M

The specific fuel congumption, SFC, is given by

L OO TGRS e

'3600mf

SFC =

AD

97

Integration of the

However, the vulne of plug thrust has the

In fact, it is

The thickness of the heat addition

Let H be the heating value of the fuel
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when AD is the change in boattail drag. The change in boattsil drag is
2D = Lp' sin a; the angle @ is defined in Figure 40, Combining Equations
(138) and (139) along with the expression for AD gives

3600ap
(v < 1)MH sin e (140)

1000 ft/sec, § = ‘\/Nﬁ - 1= 1,615, v = 1.4,

M= 1.92, H= 20,000 BIU/1b_, ard ¢ = 17°, and dividing by 778 £t-1b,/BTU

SFC =

Ingerting numerical values, a

leads to SFC = 1.685 per hour. This is not particularly an exciting value for
SFC; however, for the strong solution the heat addition causes wave trapping and
significantly increases plug thrust. Note that SFC is not dependent on the
amount of heat added, Less heat gives less thrust; more heat gives propor-

tionately more thrust.

How let's look at the flow on the plug, To start the solution, the slip-
stream angle, 8, must be determined. Figure 41 is a ploct of the curves showing
pressure in the external flow as a function of © and the pressure of the nozzle
flow also as a function of 6. The ordinate is pressure behind the obligue
shock (or downstream of the expansion fan for the nozzle flow) divided by
freestream stagnation pressure. There are two possible solutions; the strong
solution was chosen for this example, Values are 6 = + 0.10, subsonic external
flow, and & shock wave angle of °, inowing © at the boattail-slipstream
junction permits one to start the solution using finite waves,

The wave geometry along the plug is shown in Figure 42, Since the
reflection coefficients at the slipstream have the value ~ 1.0, the flow
becomes periodic, The pressure along the plug, which is shown in Figure 43, is

everywhere larger than embient pressure, Integration of the preasure gives
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plug thrust
ideal nozzle thrust

= 0,223

Eap izl By

If heat is added so that p'/pT0 = ,027 on the boattail, the valune of' SFC

L P b 5 I8

becomes less than 0.1 per hour ! In Bquation (139), AD would now include
both the decrease in boattail drag and the increase in plug thrust,
Wave Trapping; Discussion of Numerical Zxample

In the course of masking a numerical experiment, there are numerous
assumptions and decisions to make, Having completed this part of an analysis
A of the influence of heat addition, one bas new perspective. The decrease in

} i boattail drag and the corresponding SFC are fairly straightforward calcula-

tions, and the value of SFC = 1,685 is prcbably fairly accurate.

Considering the plug thrust increment due to heat addition, it is apparent

A LA

3

g» that a crossroads occurs at the point of taking a weak or strong solution,

: See, once again, Figure 41, For this example, the strong solution was taken.
3 The strong solution gives a subsonic external flow at least initially.

'gx That fact, of course, is the basis for wave trapping. Somewhere along the plug,
the external flow may accelerate from subsonic flow to supersonic flow. OJnce
:? the external flow becomes supersonic, the waves are no longer irapped in the

3 nozzle flow., Netermination of the subsoniz flow and the change to supersonic
- flow is extremely difficult.

‘% if one had taken the weak solution instead cf the strong solution, the

3 pressure distribution along the plug, at least according to current estimates,
would be gualitatively similar to Figure 39,

b Changing NFR ralses the curve labelled "NOZZLE FLOW" in Figure 41.

E: 4s the nozzle-flow curve is raised, the weak and strong solutions converge o a
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single solution at the point of tangency. See Figure 44(a) and 44(Db).

Tnis sirgle solution is a strong shock solution, Increasing NFR beyond the
point of tangency raises the curve for "NOZILE FLOW" so that an intersection
of the nozzle flow curve and external flow curve does not cccur. The oblique
shock probably moves upstream to the point where the boattail is formed,

This case is illustrated ir Figure 44(c). This would give high pressure on
the boattail but probably would give low rlug thrust.

Adding heat on the boattail has two influences: (1) Due to change in 8,
the curve for external flow in Figure 41 is shifted to the right; and (2) due
to increased pressure ahead of the shock wave, the curve is moved vertically.
This is illustrated in Figure 45(a). For large NFR and small heat addition,
there may be a solution as shown in Figure 45(c). Additional heat release
causes a shift in the curve making possible both weak and strong solutions,
See Figure 45(d).

The validity of the flow shown in Figures 42 and 43 is doubtful due teo
the fact that the external flow probably accelerates from subsonic to super-
sonic. Tne stroang solution may not occur. Consequently, one is skeptical
of the SFC = 0.1, Additional analysis is necessary to obtain the plug
pressure distribution with heat addition. Both the weak solution and refine-
ment of the stroag solution shovld be considered. One would exrect 112 heat
addition to have a favorable influence on plug thrust.

Bage Flow Froblem with Haat Addition; Flanar Flow

One application of external burning which has been investigated both
experimentally and theoretically is the modification of base yressure by heat

ajdition, The heat may be added in the base recirculation zone, in the viscous
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8 DISTANCE ALONG PLUS DISTANCE ALONG PLUG

{a) TWO INTERSECTIONS; WEAK AND STRONG SOLUTIONS.

—— STRONG (STRONG SAME AS ILLUSTRATED ABOVE)

PRESSURE

(b) TANGENT, STRONG SOLUTION.

OBLIQUE SHOCK
+—RECIRCULATION ZONE

NOZZLE FLOW

PRESSURE

EXTERNAL FLOW

{
2] DISTANCE ALONG PLUG

(¢) NO INTERSECTION; SHOCK UPSTREAM OF BOAT TAIL.

FIGURE 44.
INFLUENCE OF CHANGING NOZZL.E PRESSURE RATIO WITH FIXED HEAT ADDITION.
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FiGURE 48.

INFLUENCE OF CHANGING HEAT ADDITION WITH FIXED NOZZLE PRESSURE RAT:O.

PRESSURE

PRESSURE

PRESSURE

1
e

{a) INFLUENCE OF INCREASING HEAT ADDITION ON EXTERNAL FLOW.

PRESSURE

PRESSURE DISTRIBUTION
AND FLOWSIMILAR TO
FIGURE 44({c)
]

(b) NOINTERSECTION WITH SMALL HEAT ADDITION,

PRESSURE DISTRIBUTION
AND FLOWSIMILAR TO
FIGURE 44 (b)
STRONG
8

(c) TANGENT STRONG SOLUTION,

PRESSURE DISTRIBUTION
AND FLOW SIMILAR TO
STRONG FIGURE 44 {a)
WEAK
[°]

(d) TWO SOLUTIONS; WEAK AND STRONG.
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sl.ear layer, or
(15)
(20)

Billig
Re berts has
It is wort:

This is illustr

is shown as d=as:

pl"e I,u .

a the inviscid flow adjacent to the shear layer. 1In 1967,

2d an excellent summary of work to date. More recently,
.r~itten a survey on the subject.

~iile to examine the base flow from an integral point of view.

.-»d in Figure 46. The coatrol volume for the momentum theorem

lines with various .urfaces identified by a, b, cy, « « « &

Using notation 1 Chapter 7 of Liepmann and Roshko,(15) the monzntum theorem is

base pressure i

qui(;jnj JaA + J pndA = 0 (141)
On~ car add sn in zgral of ambient pressure over the control volume, For
= 1,
1 -
J >u1(u.ln1 + uznz)dA + ~[(p - R»)nldA =0 (142)

For the control

Heat sdaition in

the shape of tne

v _ume shown in Figure 46, there are four integrals.

( . r f 2.
Py = p) (- 2 dA + J pul(— 1)dA + (p - pw)nldA + J puydA = 0 (143)

be ed de

Pu-_,sz + j- Puidl + (p - p.,)nldA (144)

de @ be @ cd @
t.2 inviscid flow above the edge of the ghear layer will alter

~ reamline from c¢c to d. Changing streamline cd will not

influence integrs! 9 above, It is not resdily apparent how integral@
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changes due to modification of streamline cd. Of course integral @ is

directly influenced.

To gain some insight into the anticipated change in integial @, one

can use the continuilty equution which is

pu dA = pu,dA (145)
be de

Since integrsl over surface bc Joesn't change when streamline c¢d is changsd,

e R S,
i
g e« 1t g o | AW LR PP RSN S T

this means the integral over de does not change. Any veriation in integra].(::>
of Bquation (144) is due to variations in ¢ and ui; however, Equation (145)
tells us any change in p is balanced by a compensating change in Y.

If the flow atove the edge of the shear layer illustrated in Figure 46

¥
N PR e s

is inviscid and if only one family of characteristics is significant, then

400 o yigte
P I

Y

one can relate local streamline slope to pressure. To demonstrate the influence

s S

i e S

of the shape of streamline cd on base pressure, a sample prctlem was worked.

20

T e

= This is illustrated by Figure 47. Streamline cd is used with the same lateral
;i; : displacement but with large turning angle in the upper diagram. The pressure
£ {
E- ¢ distribution along the streamline is shown in the graphs below each streamline,
{4

From the curves one can evaluate the integral or equivalent series

O H e W Y

P THAT S, §TFD

p p
I= | —n,dA= daa (146)
pT * pT j
cd J

whera AAJ is the element of area projected in the Xy direction, Numerical
values for I are 12,8 for upper curve and 21.7 for lower curve. Relating

Equation (146) to Equation (144) gives
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P B
Py (;5 - 5})“ = (p = pylnydA = polI - 52.8) (147)
3 cd cd

The sharp turning curve gives a value of - AOpT for integral (::) of
Equation (144), whereas the gradual turning curve gives - 31.1pT. The base
pressure woulc be greater with the gradual turning streamline cd. It is

obvious from this analysis that one wants to maintein a high pressure on

i PEHANRR I SR % PR 5

streamline cd to increase base pressure. The heat addition zone shown in
5 Figure 48 will do that.
o Now let's return to the problem of how much pressure increase results

from the neat addition zone. Consider & heat addition 2zone located above a

é slipstream as shown in Figure 49, This is a model to represent the flow
k. ; depicted in Figure 48 One replaces the lateral gradient in Mach number :
i :
-é { with a slipstream having supersonic flow above and subsonic flow below. With E
‘ . ;
= é a lateral Mach number gradient, as in Figure 48, the characteristics refliect b
E ¢ from the sonic line in the form of a cusp. %
.; H :%
E A paragraph will now be used to explain the notation Er’ Cr, Eg, Cp. 3
2 3
”é The symbols E and C are for Bxpansion and Compression waves. The subscrijts %
3
K i r and { represent right running and left running waves respectively. 3
- 7
Z In Figure 4%the heat addition zone has a leading edge swept at angle p. 4
by £ :
e Tris gives a finite wave Cr‘ The pressure along the slipstream remairs at g
3 E|
4 f Fressure p,. The waves from the heat addition zone and the reflected waves %
; turn the flow while keeping pressure constunt. One way to describe this is to §
2 g say that the compression waves from the heat addition zone have cancelled the E
f : expangion wavas which wouid have originated due to kink in streamline at §
3 & E
3 ? B
bl <«
3
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point ‘. The turning angle is 28 at point or twice the turning angle due

to Cr' The reflection hag effectively doubled the influence of the waves from

the heat addition zone.

The doubling of effectiveness can be seen in the following analysis: In

free unbounded space the turning angle is giver by

s Yl . ¥ (y-Lhb
tan 6= 0= g~ = J >0 (148)

Bquation (148) is obtained from geometry and Equaticn (40). From Rquation (41)

t = u@ (149)

PT = T 2ap
where symbol b is defined by Figure 49. Due to turning of flow by an

amount 28, the increment of pressure decrease would be

p' = - 3’-}?99 (150)

From the flow field analysis illustrated in Figure 49, the following
equation must be true

2p' + p* =0 (151)
Combining Equations (148), (149), (150), and (151}, one can verify that
Bouation (151) is in fact true,

The mechanism for altering base pressure by heat addition in the adjacent
inviscid flow is apparent if one retraces the discussion associated with
Figures 46, 47, and 48. To summarize, the streamline cd must turn inward
toward the axis or plane of symmetry. Without heat addition, this turning
caugses the pressure to drop. Sharp turning gives low pressure and low base
pressure; see souation (144) and Figure 47. Heat addition allows tkis inward

turning without loss of pressure as shown in Figures 48 and 49. Strahle's(zl)

analysis suggests a new way to overcome base drag.
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The analysis of Fein and Strahle(zz) congidered a two-dimensional
planar geometry, i.e., wing-like objects. Projectiles are, of course,
axisymmetric., This section examines some of the changes to be exc.ected when
thie planar results are replaced by calculations for the axisymr.etric case.

The method outlined in Liepmann and Roshko(IS) was uged to calculate the
flow field for axisymmetric heat addition. To verify the procedure for
handling the characteristics near the axis, a model of a spherical, radially
expanding flow was used. The results of that calculation are shown in Figure 5Q
Since the flow is known, one knows Mach number at any radius R, The Mach
nurber calculated from the characteristics solution is shown in the thirg
column of the data summary in Figure 5Q The Mach number based on the value
of R and {low area is shown in the first column.

A planar radial flow has an area variation linear in R, whereas the

axisymmetric radial flow has a R2 dependence for ares. This can be represented

by
Y M _ IR
A "R A ‘R (152)
Flenar Axisymmetric

Partial solutions of the flow field with heat addition were obtaired for
two cases. Both cases had an annular heat addition sone as illustrated in the
lower left-hand corner of Figure 51. The heuat addition was sufficient to cause
a maximum turning angle of emax = - 6% st a radius of 6 inches. In the first case,
the heat zone was bounded by 6 { r {7 and 0 € 2 3. In the second case, it

was 6 {r {8 and 0 { z (3. For the first case, shown in Figure 51, Mg = \/_.
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1.1 1.3 7.0 15 49 1.32 2585 ,196 8,53 751
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For the second case, Mo was chosen as 2, and the radial extent of the heat
addition zone was increased to spread out the waves. This was done to avoid
merging of the characteristics to form & shock wsve,

Pressure versus radius is plotted in Figure 51. The mid-characteristic,

wialch has points 1, 2, and 3, has an imperceptible increase in pressure ag

radius decreases. The charecteristics converge to form & shnck wave. When this

: (23)

i Lhappens, the techniques outlined in tke book and NACA TN(ZI’) by Ferri are

PR 2ol 250k doa e H A T B0 A L 01 R 0 Sl K Tt NV AR e $UAL W

¥

(2

applied. 3

Along tre characteristic, which sterts at r = 6" with emax = - 60, the é
pressure rises slightly to a radiug of r = 2", Between O gr g 2, the rressure i
increases rapidly. Due tc the large mesh size, the pressure variation at %
points 12, 13, and 14 may not be correct., Certainly the end peint, number 14, é
is correct. The dashed line represents the curve that would probably - g
ottained with finer mesh size and a more accurete treatment of tke shock waves, §

£

Note that for Mg = 2, even a normal shock wave is nesrly isentropie, whizh
permits treatuent of shock waves as finite isentropic compression waves,
The conclusions from Figure 51 are as follows:
(a) In the axisymmetric geometry, compression waves tend to merge more
quickly.
(b) The increase of pressure with decrcasing redius is very small until
the axis 1s approached.
Now let's look at the second example which was chosen to avoid a shock wave.
The chargcteristics for the second case are shown in Figure 52, Increasing
the spacing of the waves did not completely avoid a shock wave. A normal shock

extends from points 13 and 14 tc the axis.
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-4
“3
E
r
i} The pressure as a function of radius is shown in Figure 53 for the mid-wave
 § (wave starting at r = 6 with 6 = - 30) and the terminal wave (wave starting at
‘ é ? r=6 with 8= - 6°), As before in tre previous example, the pressure does not
: Lz ; increase significantly until very close tc the axis. This is true for botlh the
-%é , mid-wave ani the terminal wave, The pressure is shown as a dasii~ict-dash line
% ; between point 14 and the axis since this was not calculated in detail.
{? Figure 54 gives information about the streamlineg and flow deflection, ;
; Right on the axis, of course, the streamline is the axis. There is large ;
E tur-  near the axis giving small radius of curvature for thne streamline, %
‘é This balances the lavge radial prescure gradient near the axis, %
fé The conclusions from the second case are the same as the first case. %
lg Freliminary Corments Based cn a Cursory Look at Axisymmetric Case §
LY. 3
.i The change in base drag is given by g
Bt 1
AD, = Ap Ay (153)
; Bach. of the two terms, APy and A, will now be discusseca. The results shown i
‘ ,; in Figures 51, 52, and 53 suggest that Ap, may net be increased significantly ;
Ef as a direct resuit of changing geometry from planar tc axisymmetric. However, %
,g the resulte shown in Figures 51, 52, and 54 more closely apply to pressure at %
2- the dividing streamlire and not to base pressure. The flow in the base region §
.Eg may magnify the pressure, just as the initial pressure due to heat addition at é
é r= & .s increased slightly due to axisymmetric geometry. g
 £¥ Compression originating with the heat addition will be reflected at the %
f_l sonic.line. See Figure 48 and point (:) of Figure 55. These compression waves g
7‘;’ will be reflected from the wake of the heat addition zone; see pcint @ of

Figure 55, The reflection may be n=gative, i.e., changing the compression waves

to expansion weves. This negative reflection would not be faverable.
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Now let's look at the area term, Coasider the seme amount of heat, Q,
released in both planar and axisymmetric case., In the axisymmetric case, Q is
distributed along a circle of radius r, giving A/2ﬂr2, BTU/length sec, In the
planar case, Q is distributed along two lines of length REPY One line is at the
top, and the other at the bottom., Ses Figure 56, For the planar case, the
heat release is Q/Zﬂrz, BTU/length sec, which is identical to the axisymmetric

case, The area influenced by the heat release is in the ratio

base area; axisymmetric case ﬂri

) o/
1
= 5= (154)
2r2

base area; planaer case = 2nr1r2
Making rl/r2 small nelps increase pressure at ry due to heat addition; see
Figure 56. Making rl/r2 large makes the base area very small in axisymmetric
case a3 compared to the planar case. One factor helps; the other hurts.
As a fingl remark, it should be stated again that these are preliminary

thoughts and conclusions,

Spin Recovery Wing Heat Addition

Some modern fighter and attack aircraft can be flown into spins of
such nature that special equipment is needed for recovery. The drag
parachute may be deployed to 1ift the aircraft tail, Before normal flight
is restored, the parachute must be jettisoned. An alternate method of
obtaining a torque on the aircraft weuld be heat addition., Figure 57 illustrates
a modern fighter in a spin. The engines run normally and produce thrust. By
spraying fuel into the exhaust stream, the heat addition deflects the jet down~
ward, A torque is developed which tends to 1ift the tail. Let's coumpare a

parachute recovery with heat addition.
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§ Assume the aircraft has a moment of inertia of 6 x 1061b ftz about the %

3 § pitch axis. Assume the installed thrust is 35,000 1b with afterburner. If |
g : %
| the flow can be deflected by 6° with heat addition, the force tending to 1ift 3
2 4 i
3 g %
¢ the tail is 4000 1b., If the airecraft has a moment arm of 22 feet, the §
3 ' restoring torque is 8.8 x 10‘1b ft. Time required to point the aircraft k
: downward, i.e., turn 90° in pitch, is i
nl £

- t= 7 = L6 sec 3
é If the sink rate is 140 ft/sec, the recovery altitude is 6400 ft. %
3 § One can estimste the amoun! of heat to be added for a deflection of 6° 3
; using Equations (119) through (129). The temperature of exhaust must be é
4 increased ny 30 per cent. :
4 §
4 Now consider s parachute of 10 ft diameter with a drag coefficient of 2, §
E The drag at a sink rate of 140 ft/sec will be %
253 B

D= Zrpi’AC, = 4200 1b ;
f ; This is comparable to the force due to thrust deflection. Performance of é

E parachute and heat addition is comparable, g
3 SUMMARY AND CONCLUDING DISCUSSION %

4 é:

B¢ Use of an area rule or quasi area rule implies optimization. The area Z
% rule can be used to translate an optimum axisymmetric body, e.g., von Karman %
3 3
K ogive, to a three-dimensional body. The optimum axisymmetric body shape is found %
1 by application of the calculus of variations to the source distribution function, E
f(x). When there is heat addition, there is a new function to optimize, Q(x,r); 3

see Figure 55. Both f(x) and Q(x,r) must be simultaneously optimized. The §
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axisymmetric, small perturbation, solution for heat addition has never been
obtained; it is an essential building block of the quasi area rule,

When the body develops 1ift witk aerndynamic circulation, there is another
complexity to the analysis. Vorticity due to 1ift must be included in the analysis.
There may be an optimum balance between 1ift generzted aerodynamically and 1lift
generated by heat addition,

To ayply the optimization technique to turbojets, ramjets, or other
internally burning, air btreathing, engines, a different analytical technique
is required. A combined thrust-drag technique was briefly introduced, This
method uses an energy disc.

By discussing botk one-dimensional and two-dimensional, planar, heat
addition, the connection between heat fronts, coribustion fans, and one-dimensional
Leat addition was demonstrated. Heat addition in the plenar case may be represented
either by line sources or by a volume distribution function, Q(x,r). In several
ways heat addition is similar to the flow generated by a solid body. The
pressure cn the flat plate of Figure 32 is the same as that caused by a wedge
of angle &. Pressure and velocity perturbations are identical for both solid
body and heat addition. Differences exist between flow over solid bodies
and flow through a region of heat addition., One difference is drag.

Therz are three approaches to calculate thrust minus drag in an inviscid
flows integration of pressurs over the body surface, momentum control volume,
and wave drag. Integration »f pressure is the most direct of the methods.

Figures 22 and 27 illustrate the wave energy and morentum approaches for a
thrusting, lifting, planar airfoil, Figures 20, 23, and 26 {llustrate the wave
and momentum approaches for an isolated heut addition zone in an infinite medium.

The merit of a particular method depends on the geomztry,
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Applications of external burning include lifting, thrusting airfoils, base
or boattail pressure modification for an exhaust, development of base thrust
for projectiles, and spin recovery. External burning for airfoils and projectiles

has been studied extensively both theoretically and experimentally. A new

e T AL AL SR R BT i ARG 2

phenomenon occurs for the exhaust problem; this is wave trapping. A

preliminary analysis indicates heat addition for spin recovery is comparable

3 to use of a parachute.

MRS s

ity

¥
SR

PR TR

el

.
i

155 - o bt T TN e A
Ceni g AT R e e o R RN A e Vi o B AR

ORI

i
AT

Rt he T
o2

]
&
]
3
i
i kS

-

m&ﬂk@ﬂimm-u&:ﬁ’ RN SN

ot inmta AT S thos e st B2




LS

SRl

0 O P b
i Bt

eI EANRIES 2l 2

Pontecriiaid

L :fl"r“.

%

10.

11,

12,

113,

15.

RCFERENCES

H. Ashley and M, Landahl, Aerodynamics of Wiugs and Bodies, Addison-
Wesley Pub., Keading, Mass., 1965,

T. von Karman, "The Problem of Resistance in Compressible Fluids,"
GALCIT Publication No. 75, 1936. Also Collected Works of T. von Karman,
Pergamon Press.

W, R. Sears, "On Projectiles of Minimum Wave Drag," Quarterly Journal of
4pplied Mathematics, 4, pp. 361-366, Jan., 1947.

H. Lomax and M. A. Heaslet, "Recent Developments in the Theory of
Wing-Body Wave Drag,® J. Aero, Sci., 23, pp. 1061-1374, 1956,

R. T. Whitcomb, "A Study of the Zero-Lift Drag-Rise Characteristics of
Wing-Body Combinations near the Sveed of Sound," NACA Report 1273, 1956,

I. I, Sedov, Similarity and Dimensional Methods in Mechanics, Academic
Press, New York, 1959,

A. H. Shapiro, The Dynamics and Thermodyramics of Compressible Fluid Flow,
Ronald Press, New York, 1953.

W. R. Sears, Bditor, General Theory of High Speed Aerodynamics, Volume VI,
Princeton Series on High Speed Aerodynamics und Jet Propulsion,
Princeton Univ. Fress, 1554.

A. H. Shapiro and W. R. Hawthorne, "The Mechanics and Thermodynamics of
Steady, One-Dimensional Gas Flow," Journal of Applied Mechanics, 14,
pp. 4A317-338, 1947,

H. S, Tsien and M. Beilock, "Heat Source in a Uniform Flow," J. Aeronautical
Sciences, 16, p. 756, 1949.

K. Oswatitsch, "Thrust and Drag with Heat Addition to a Supersoaic Flow,"
R« A. E. Library Translation No. 1161, January 1967, Grest Britain.

L. Ho Townend, "An Analysis of Oblique and Normal Detonation Waves,"
R. A. B. Technical Report No, 66081, March 1966, Great Britain.

K. Oswatitsch, Gag Dynamics, Academic Press, New York, 1956.
M. A. Heaslet and H. Lomax, "3upersonic and Transonic Small Perturbation

Theory," Princeton Series on High Speed Aerodynamics and Jet Propulsion,
Volume VI, Princeton University Press, 1954, pp. 141-142.

H. W. Liepmann and A. Roshko, Elements of Gasdynamics, John Wiley, New York,
1957,

130

R e i U e e e e b A e St b St e N w,'a%
kS

o,

K.
s,
B LA TSN SRR Rl bR A e e AR U F R b PP 05 T S 00 S e o A e, 5 0! Bl ST 0B LR S B HEE i b SNty s B £t M i a5 o R B i 2 LA 3 X AR L A B T B i NS s T Lo S




AT LY

RV D)

Z iR

g R A Kt

NN e
iR o

L e e T )

e 40

A - O

e e e T TR TR TR Y, Sl TN Y R IR ST . <y N 1
AT ST IR ST T s i e, ST TP RATEDY | S NI T B IR R TP G o

18.

19.

20,

22,

23,

F. S. Billig, "External Burning in Supersonic Streams,"

Technical Memorandum, TG-912, May 1967, The Johns Hopkins University,
Applied Physics Laboratory.

Artur Mager, "Supersonic Airfoil Performance with Small Heat Addition,"
2_6., ppo 99"107’ 19590

D. B. Harrington, "Performance of a 10° Conical Plug Nozzle with Various

Primary Flap and Nacelle Configurations at Mach Numbers from O to 1.97,"
NASA TM X-2086, Dec. 1970,

G. R, Ratone, "Low Angle Flug Nozzle Performance Characteristics,"
ATAA Propulsion Joint Specialists Conference. Flight Propulsion
Division, General Electric Company, Cincinnati, Ohio,

A.Roberts, "BExternal Burning Propulsion: A Review (U)," Indian
Head Special Publication 71-79, 25 May 1971, Naval Ordnance Station,
Indian Head, Maryland.

Warren C. Strahle, "Theoretical Consideration of Combustion Effects

on Base Pressure in Supersonic Flight," Twelfth Symposium on Combustion,
Combustion Institute, Fittsburgh, 7., po. 1163-1173, 1969.

H. L. Fein, Personal Communication.

A. Ferri, Elements of Aerodynamics of Supersonic Flows, MacMillan Co.,
New York, 1949,

A. Ferri, "Application of the Method of Characteristics to Supersonic
Rotational Flow," NACA TN 1135, 1946.

121

st P o

A
mﬁmﬁ
P 2 N o A b

RO r bt s o N H D SN Y Al e a2

LAl

Lo e Sk

dha bl yerkd ik, La AR o 20T A e bt T

oy

-

AT oL A 5 TP L i A T 02 020 o, L KA e b St

B,



o TR I AT RIS A

Sy ) AT b 1 o b K r s et o a¢ [

G g Ty ‘z""" ”.

BIBLIOGRATHY

b e

1. A. L. Addy, "Experimental-Theoretical Correlation ¢f Supersonic Jet-on
Base Pressure for Cylindrical Afterbodies," J. of Aircraft, 1,
pp. 474477, 1870,

2 ALk

2, G, Maise, "Wave Drag of Optimum and Cther Boat Tails," J. of Aircraft, 7,
ppe 477-478, 1970,

3. B, T. Chu, "Pressure Waves Generated by Addition of Heat in a Gaseous
Medium," NACA, TN 3411, June 1055,
4o B, T. Cnu, "Mechunism of Generation cf Fressure Wives i* Flane Fronts,®

TACA TN 35683,

% J. Zierer, "On the Influence of the Addition cf Keat to Hypersounic Flow,"
RAE Lib. Trans. No. 1222, 1967 April.

E. G, Broadbent and L, H. Townend, "Shockless Flows with Eesat Additicn in
Two Dimensions," RAE TR 69284, Dec. 1969,

« ©B. G, Broadbent, "A Class of Two Dimensionual Fiows with Heat Addition,"
RAE TR €8005, Jan. 1968,

&. 1. H., Townend, "An Analysis of Cblique and Normal Detonation Waves,"
RAE TR 66031, March 1966.

5

. I, I, Pinkel and J. S. Serafini, "Graphical Method for Obtainiug Flow
Field in 2D SFS Stream to Which Heat Is Added," NACA TN 2206, Nev. 1S50,

gy

N
Sl
[
[
.

J. Zierep, "The Ackeret~Formula for Supersonic Flows .ith Heat Addition,"
Unpublished Notes.

> R s ola e & !
“ﬁ%mm&mﬁ:&iﬁﬁ&ﬁ&%ﬁ&;&m&hﬁm&J«;ﬁwémﬂﬁm%%in&;x&.ﬁr:rhmm)ahmﬁéﬁ&r)m

J. Rues, "Three-Front Configurations with Energy Aaiition,® RAE Lib,
Trans, No. 1240, Jov. 1$67,

AL

E. R, Wnittley and H. Barrow; "A Study of the Effect of Space Variable
Heat Release on Fluid Flow in a Duct," Faper 7, Thersodynamics and Fluid
Mechaniecs Conventlion, Canbridge, 1%64.

3 13, F. Bartlma, "Boundary Conditions in the Fresence of Oblique Rzacticr Yaves
in Supersonic Flow," RAE Lit, Trans. No. 1758, April 1969,

3 14. G. G. Cheryni, "Supersonic Flow Fast Bodies with Formaticn of Detonaticn
E and Combusticn Fronts,*

B 15. B. 3. Baldwin, Jr., "An Optimization $tudy of Effects on Aircrsfl
3 Ferformance of Various Forms of Heat Adauition,™ NASA TN D-~74, March 1¢60,

1 132

1.
% - " . - -
L&ymﬂ-ﬁ:ﬁr«amé:iafﬁzﬁm.'kmm&stq b g B A eyt A F R R A S P e S AR

]

e ri T S R SO




I iy T ST L S e " ey mrp—" I
AT O RAIIRI: 1 S 55 S AU e (E R R S T 7 e

16.

17,

18,

19.

20,

21,

D. .wes, "Concerning the Bquivalence Between Heat- Force- and Mass-
Sources," RAE Lib. Trans, No. 1119, July 1965,

R. G. Dorsch, J. S. Serafini, E. A. Fletcher, and I. I. Pinkel, "Exp.
Investigaticn of Aerodynamics Effects of External Combustion in Airstream
below 2D SPS Wing at Mach 2.5 and 3.0," NASA Memoc 1-11-59E,

J. Pike, "A Design Method for Aircraft Basic Shapes with Fully Attached
Shock Waves Using Known Axisymmetric Flow Fields," RAE TR 66069, March 1%66.

b

J. Zierep, "Transonic Flow with Heat Input," RAE Lib. Trans. No. 1452,
Feb, 1970,

J. Zierep, "Similarity lews for Flows Fast Aerofoils with Heat Addition,"
RAE Lib, Trans. No. 1114, June 1965,

F. Lane, "Linearized Supersonic Theoretical Approximation to 3D Combustor
Flow," GASL TR No. 544, July 1965.

K ‘ o nkg )
RO T8 gt SOTLIA YA AN S A TR DRt

e
s

AR RIS ORI R H R SR K.

¢y
S Rt

7

o

133

4 . ..
Eﬁ-&\m&nsmm:aawesmw@mkws.m&mm&:mgg\ﬂ:w;@aﬁrm&zﬁk@;mw

A St Lttt 2 A DA GRG0 TR YN X




43

=

é&ﬁgﬁﬁﬁ&? T Oy R S e T P R 7 ST T ML S TSR T P PRre R A AR O VH A ™ ﬂﬁgﬁ3a§§_@?%am_ﬁgj.ﬂ%ﬁsﬁ%ﬁsgé%aﬁdﬁﬂﬁgﬁéﬁﬁﬁgﬁﬁi%éaj
i e " o a@ 4 il AL S RIS v ;
= .

- b

L T

;
m o 4 !
’ iy .

g wME s s

g

S AT T g
X +6

t

L

0

S S

PR e

x ~€

AR

v P

AR A

TR

=1
134

Tt i

i

X -e
2¢&

A

o

SRRy
26
x>0

3

e
APFENDIX - PROFERTIES OF DELTA FUNCTION
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0
£(x)8(x)dx = £(0)

Jf(x)ﬁ(x - a)dx = f(a)
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Derivative of unit function
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Proof £y ard g, " positive number

d(f1) = 41 + 1df

FdI = ~/fI) - Idf

& s &
j S x)ikax = £(x)1(x) - f I(x)f *(x)dx
-8, €, €
&
= £(g) - f£1(x)ax = £(g;) - £(g;) + £(0) = £{0)
0
v &(x) = 8(-x)
v xb(x) = 0

VI 6(ax) = %S(x)

Proof
Z = 8x dz = adx
0 no
£(x)8(ax)ax = & | £(38(2)dz = 2£(0)
xjol& T a a a
-0 o0

&

VII [8(:{2 - azﬂ-- %- [S(X +a) +b(x - aﬂ
Proof

b[f(x)] = :-;-f-[é(x - xo) + 8(x - xl) + 8(x - x2) +. .. .J
dax

S(Jc2 - &2\ = -51;-([6(x +a)+8(x - a)]

Xgr Xys Xy o o o QTO roots of f(x)
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VIII

[5(& - x)dx_]S(x -b) = 86(a-D)

Proof

ff(ai[&(a - x)dx &(x - b)da = fff(a)&(a - x)8(x - b)dadx =
=J'f(x)6(x - b)dx = f(b)

SR Loyl O 4 s Y I BRI E N e bt BN

Jf(a)S(a - b)da = f(b)

Second Proof

jf(b) j&(a - x)dx 8(x - b)db =[ff(b)6(a - x)8(x - b)dbdx =

ff(x)S(x ~a)x = f(a)

Jf(b)&(a - b)db = '(a)

IX £(x)8(x -~ a) = £{a)8(x - a}

g
p
¥
2
’§
k]
g
-
%

Jf(x)&(x - a)ix = ff(a)&(x - 8)dx = f(a,‘.:)fS(x - a)dx = f{a)
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Jf(x)S(x - a)da = jf(a)&(x ~ a)da = f{x}

o0
%§=~[@¥§uﬂfwhy
X1 it 00
8(x - x!) = .%n_. feiw(x -x')dm

-00

XII 3D Delta Function

a?)=suﬁwﬁu)=§3 ok T 43

ind - - —
r=ex+eyy¢ez
X 2

X111 VZ(%) = ~4n(r)

ﬁ(!‘)dxdydz = 1 8(r) = { 6 r¥o0
1

r=0

ra-\/ (x - x')2 + (y - y')z + (2 - Z')2

v o

Jcomxdu = 7§(x)
-~ 00

Equal in mense bothk behave same ss factors in an
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Generalized 2D 6—runction

J’S(r -~ a)§(f - )rdrdg = 1

SY_f(x)] = -I-j‘-q §(x - xo)
dx

where f(xo) = 0, Note §(f)df = &(x)dx

Ways to represent § function

2 Ixlge

0 X >E
2
-rx
Sn(x) = / ge

§{px)] = E‘;‘.%‘;i'y 5(x ~ a,)
i

#(x) = O: a; are roots of g(x) =0, gt= %g .

b .b
j 6(x ~ y)ixdy = b - a
a

a

X-y =0

Proof b
b dY
B(x - y)dx = 1 ¥
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